
Managing Incentives in
Community Network Clouds

Amin M. Khan

a dissertation
presented to the faculty

of Universitat Politècnica de Catalunya
in candidacy for the degree
of Doctor of Philosophy

recommended for acceptance
by the Department of

Computer Architecture

Advisors: Dr. Felix Freitag & Dr. Luís Rodrigues

April 2016

©2016 – Amin M. Khan
all rights reserved.

To my family.
To my teachers, my mentors.

Acknowledgments

I am hugely indebted to my advisors, Felix Freitag and Luís Rodrigues, without whose
guidance and support, this journey would never have been possible.

I would also like to thank my co-authors Ümit C. Büyükşahin (UPC), Roger P. Centelles
(Guifi), Emmanouil Dimogerontakis (UPC), Jacek Dominiak (CA Labs), Smrati Gupta (CA
Labs), Mennan Selimi (UPC), Leila Sharifi (IST), and Xavier Vilaça (INESC-ID), who were
a great pleasure to work with. I am also thankful to my colleagues at Distributed Systems
Groups, DSG at UPC and GSD at INESC-ID, who provided a great work environment, and
the backdrop from many an insightful discussions.

During the course of my research, I got a chance to interact with many great minds, and
I appreciate their feedback and insights, notably Jörn Altmann (Seoul), Roger Baig (Guifi),
Gianfranco Giulioni (Chieti-Pescara), Leonardo Maccari (Trento), Victor Muntes (CA Labs),
LeandroNavarro (UPC), Navaneeth Rameshan (UPC), Omer F. Rana (Cardiff), Davide Veiga
(UPC), and Luis Veiga (INESC-ID, IST). I would like to especially thank Ricardo Pereira
(INESC-ID, IST) who reviewed an earlier draft of this manuscript and provided valuable sug-
gestions.

On this life long journey of learning, I am lucky to be guided and mentored by many great
teachers on its many twists and turns, and I owe to them my contributions and achievements.
Lastly, I am thankful to my family for their tremendous support.

* * *

This work was funded by European Commission (EACEA) through the Erasmus Mundus
doctoral fellowship, via Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-
DC) programme. This work was also supported by European Community Framework Pro-
gramme 7 FIRE Initiative projects Community Networks Testbed for the Future Internet
(CONFINE), FP7-288535, and CLOMMUNITY, FP7-317879. Support was also provided
by the Universitat Politècnica de Catalunya BarcelonaTECH and the Spanish Government
under contract TIN2013-47245-C2-1-R.

iii

http://eacea.ec.europa.eu/erasmus_mundus/results_compendia/selected_projects_action_1_joint_doctorates_en.php
http://eacea.ec.europa.eu/erasmus_mundus/results_compendia/selected_projects_action_1_joint_doctorates_en.php
http://emjd-dc.eu
http://emjd-dc.eu

Abstract

Internet and communication technologies have lowered the costs for communities to collab-
orate, leading to new services like user-generated content and social computing, and through
collaboration, collectively built infrastructures like community networks have also emerged.
While community networks focus solely on sharing of network bandwidth, community net-
work clouds extend this sharing to provide for applications of local interest deployed within
community networks through collaborative efforts to provision cloud infrastructures. Com-
munity network clouds complement the traditional large-scale public cloud providers similar
to themodel of decentralised edge clouds by bringing both content and computation closer to
the users at the edges of the network. Community network clouds are based on the principle
of reciprocal sharing and most of their users are moved by altruistic principles. However, as
any other human organisation, these networks are not immune to overuse, free-riding, or
under-provisioning, specially in scenarios where users may have motivations to compete for
scarce resources. We focus in this thesis on the incentives based resource regulations mech-
anisms to derive practical ways of implementing arbitration when such contention for lim-
ited resources occurs. We first design these regulation mechanisms for the local level where
stronger social relationships between the community members imply trust, and ensure ad-
herence to the system policies. We next extend the mechanisms for larger communities of
untrusted users, where rational users may be motivated to deviate for their personal gains,
and develop a distributed framework for guaranteeing trust in the resource regulation. Such
mechanisms assist in encouraging contribution by the community members, and will help
towards adoption, sustainability, and growth of the community cloud model.

Keywords

community cloud; community networks; cloud computing; economic mechanisms

v

Resumen

El Internet y las tecnologías de la comunicación han bajado los costos de colaborar en
comunidad, dando lugar a nuevos servicios, como los contenidos generados por usuarios y la
informática social y, por medio de la colaboración, han surgido infraestructuras construídas
colectivamente, como las redes comunitarias. Mientras las redes comunitarias se centran
exclusivamente en el intercambio de ancho de banda de la red, las nubes comunitarias ex-
tienden este intercambio para proporcionar aplicaciones de interés local, desplegadas en
las redes comunitarias a través de actividades de colaboración para proveer infraestructuras
en la nube. Las nubes comunitarias complementan a los proveedores tradicionales de la
nube a gran escala, en un modo similar al modelo de las nubes descentralizadas, trayendo
tanto el contenido como la computación más cerca hacia los usuarios en los extremos de
la red. Las nubes comunitarias se basan en el principio de compartir recíprocamente y la
mayoría de sus usuarios son movidos por principios altruistas. Sin embargo, como cualquier
otra organización humana, estas redes no son inmunes al uso excesivo, al parasitismo, o
al bajo-aprovisionamiento, especialmente en escenarios donde los usuarios pueden estar
motivados a competir por recursos escasos. Nos centramos en esta tesis en los mecanismos
de regulación de recursos basados en incentivos para derivar formas de aplicación práctica
del arbitraje cuando se produce tal contención por recursos limitados. Primero diseñamos
estos mecanismos de regulación a nivel local, donde las fuertes relaciones sociales entre
los miembros de la comunidad generan confianza y aseguran la adhesión a las políticas del
sistema. A continuación, extendemos los mecanismos para comunidades más grandes de
usuarios no confiables, donde usuarios racionales pueden ser motivados a desviarse por
sus ganancias personales, y desarrollamos un marco distribuido para garantizar confianza
en la regulación de recursos. Tales mecanismos ayudan a fomentar la contribución de los
miembros de la comunidad, y ayudan a la adopción, la sostenibilidad y el crecimiento del
modelo de nube comunitaria.

Palabras Clave

nube comunitaria; redes comunitarias; computación en la nube; mecanismos económicos

vii

Resumo

A Internet e as tecnologias de comunicação têm reduzido os custos para comunidades col-
aborarem, levando a novos serviços como conteúdo gerado pelos utilizadores e computação
social, surgindo também, através de colaboração, infraestruturas construídas colectivamente,
tais como redes comunitárias. Enquanto as redes comunitárias focam-se unicamente na
partilha de largura de banda, as núvens comunitárias alargam esta partilha para providenciar
aplicações de interesse local, implementadas dentro de redes comunitárias através de esforços
colaborativos para providenciar infraestruturas em núvem. As núvens comunitárias comple-
mentam os tradicionais fornecedores de núvens públicas de larga escala, de forma similar ao
modelo de núvens de limite, trazendo tanto conteúdo como computação para mais perto dos
utilizadores nos limites da rede. As núvens comunitárias são baseadas no princípio de partilha
recíproca e a maioria dos seus utilizadores são movidos por princípios altruístas. Contudo,
tal como qualquer outra organização humana, estas redes não são imunes à sobreutilização,
parasitismo, ou sub-provisão, especialmente em situações onde os utilizadores possam ter
motivações para competir por recursos escassos. Nesta tese focamo-nos nos mecanismos de
base para incentivo de regulação de recursos, para derivar formas práticas de implementar
arbitragemquando ocorre disputa por recursos limitados. Primeiro projectamos estesmecan-
ismos de regulação ao nível local, onde os laços sociais entre membros da comunidade são
mais fortes e implicam confiança, e garantem adesão às políticas do sistema. Em seguida
alargamos os mecanismos para comunidades de utilizadores não-confiáveis maiores, onde
utilizadores racionais podem estar motivados a desviar-se do comportamento esperado para
ganho pessoal, e desenvolvemos uma estrutura distribuída para garantir confiança na regu-
lação de recursos. Tais mecanismos incentivam à contribuição dos membros da comunidade,
e ajudando no sentido da adopção, sustentabilidade e crescimento do modelo de núvens
comunitárias.

Palavras Chave

nuvem comunitária; redes comunitárias; computação em nuvem; mecanismos económicos

ix

List of Publications

The research results from this thesis have led to the following publications:

Journal Articles

[KBF15] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Incentive-based re-
source assignment and regulation for collaborative cloud services in community
networks”. In: Journal of Computer and System Sciences 81.8 (Dec. 2015). (JCR
IF: 1.138, Q2), pp. 1479–1495.

Conference Proceedings

[Kha+16] Amin M Khan, Xavier Vilaça, Luis Rodrigues, and Felix Freitag. “A Distrib-
uted Auctioneer for Resource Allocation in Decentralized Systems”. In: 36th
IEEE International Conference on Distributed Computing Systems (ICDCS 2016).
(CORE Rank A). Nara, Japan, June 2016.

[Kha+15] Amin M Khan, Xavier Vilaça, Luis Rodrigues, and Felix Freitag. “Towards
Incentive-Compatible Pricing for Bandwidth Reservation in Community Net-
work Clouds”. In: 12th International Conference on Economics of Grids, Clouds,
Systems, and Services (GECON 2015). Cluj-Napoca, Romania: Springer Inter-
national Publishing, Sept. 2015.

[KBF14] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Prototyping
Incentive-Based Resource Assignment for Clouds in Community Networks”.
In: 28th IEEE International Conference on Advanced Information Networking
and Applications (AINA 2014). (Best Paper Award, CORE Rank B). Victoria,
Canada: IEEE, May 2014, pp. 719–726.

[KSF14] Amin M Khan, Mennan Selimi, and Felix Freitag. “Towards Distributed Archi-
tecture for Collaborative Cloud Services in Community Networks”. In: 6th Inter-
national Conference on Intelligent Networking and Collaborative Systems (INCoS
2014). Salerno, Italy: IEEE, Sept. 2014.

xi

[KBF13] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Towards Incentive-
based Resource Assignment and Regulation in Clouds for Community Net-
works”. In: Economics of Grids, Clouds, Systems, and Services. Ed. by Jörn
Altmann Altmann, Kurt Vanmechelen, and Omer F. Rana. Vol. 8193. Lecture
Notes in Computer Science. Zaragoza, Spain: Springer International Publishing,
Sept. 2013, pp. 197–211.

Other Publications

The background research to this thesis has led to the following publications:

Book Chapters

[KFN16] Amin M Khan, Felix Freitag, and Leandro Navarro. “Community Clouds”. In:
Encyclopedia of Cloud Computing. Ed. by San Murugesan and Irena Bojanova.
Wiley-IEEE, June 2016.

[Kha+16] Amin M Khan, Felix Freitag, Leandro Navarro, and Roger Baig. “Enabling
Clouds in Community Networks”. In: European Project Space on Research
and Applications of Information and Communication Systems. Ed. by Carlos
Cerqueira and James Uhomoibhi. Lisbon, Portugal: SCITEPRESS, 2016.

Journal Articles

[Sel+15] Mennan Selimi, AminMKhan, Emmanouil Dimogerontakis, Felix Freitag, and
Roger Pueyo Centelles. “Cloud services in the Guifi.net community network”.
In: Computer Networks 93.P2 (Dec. 2015). (JCR IF: 1.256, Q2), pp. 373–388.

[KF14] AminMKhan and Felix Freitag. “Sparks in the Fog: Social and EconomicMech-
anisms as Enablers for Community Network Clouds”. In: ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal 3.8 (2014).

xii

Conference Proceedings

[Kha+15] Amin M Khan, Felix Freitag, Smrati Gupta, Victor Muntés-Mulero, Jacek
Dominiak, and Peter Matthews. “On Supporting Service Selection for Col-
laborative Multi-Cloud Ecosystems in Community Networks”. In: 29th IEEE
International Conference on Advanced Information Networking and Applications
(AINA 2015). (CORE Rank B). Gwangju, Korea, Mar. 2015.

[KFR15] Amin M Khan, Felix Freitag, and Luis Rodrigues. “Current Trends and Future
Directions in Community Edge Clouds”. In: 4th International Conference on
Cloud Networking (CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015.

[KF14] Amin M Khan and Felix Freitag. “Exploring the Role of Macroeconomic Mech-
anisms in Voluntary Resource Provisioning in Community Network Clouds”.
In: 11th International Symposium on Distributed Computing and Artificial Intel-
ligence (DCAI 2014). Vol. 290. Advances in Intelligent Systems and Computing.
Salamanca, Spain: Springer International Publishing, June 2014, pp. 269–278.

Workshops

[Fre+14] Felix Freitag, Leila Sharifi, Amin M Khan, Leandro Navarro, Roger Baig, Pau
Escrich, and Luis Veiga. “A Look at Energy Efficient System Opportunities
with Community Network Clouds”. In: Workshop on Energy-Efficient System
(EES), within 2nd International Conference on ICT for Sustainability (IST4S
2014). Stockholm, Sweden, Aug. 2014.

[BKF13] Umit Cavus Buyuksahin, Amin M Khan, and Felix Freitag. “Support Service
for Reciprocal Computational Resource Sharing in Wireless Community Net-
works”. In: 5th International Workshop on Hot Topics in Mesh Networking (IEEE
HotMESH 2013), within IEEE WoWMoM. (CORE Rank C). Madrid, Spain:
IEEE, June 2013.

[Kha+13] AminMKhan, Leila Sharifi, LeandroNavarro, and Luis Veiga. “Clouds of Small
Things: Provisioning Infrastructure-as-a-Service from within Community Net-
works”. In: 2nd InternationalWorkshop onCommunity Networks and Bottom-up-
Broadband (CNBuB 2013), within IEEEWiMob. Lyon, France: IEEE, Oct. 2013,
pp. 16–21.

xiii

Abstracts, Demos & Posters

[Bai+15] Roger Baig, Felix Freitag, Amin M Khan, Agusti Moll, Leandro Navarro, Ro-
ger Pueyo Centelles, and Vladimir Vlassov. “Community Clouds at the Edge
deployed in Guifi.net”. In: 4th International Conference on Cloud Networking
(CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015.

[Sel+14] Mennan Selimi, Jorge L Florit, Davide Vega, Roc Meseguer, Ester Lopez, Amin
M Khan, Axel Neumann, Felix Freitag, Leandro Navarro, Roger Baig, Pau Es-
crich, Agusti Moll, Roger Pueyo Centelles, Ivan Vilata, Marc Aymerich, and
Santiago Lamora. “Cloud-Based Extension for Community-Lab”. In: 22nd In-
ternational Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2014). (CORE Rank A). Paris, France:
IEEE, Sept. 2014, pp. 502–505.

[Jim+13] Javi Jiménez, Roger Baig, Pau Escrich, Amin M Khan, Felix Freitag, Leandro
Navarro, Ermanno Pietrosemoli, Marco Zennaro, Amir H Payberah, and
Vladimir Vlassov. “Supporting cloud deployment in the Guifi.net community
network”. In: 5th Global Information Infrastructure and Networking Symposium
(GIIS 2013). (CORE Rank C). Trento, Italy: IEEE, Oct. 2013.

Technical Reports

[KBF13] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. Distributed Archi-
tecture for Cloud System tailored for Wireless Community Networks. Tech. rep.
UPC-DAC-RR-XCSD-2013-4. Barcelona, Spain: Universitat Politècnica de
Catalunya, May 2013.

xiv

Contents

Acknowledgments ii

Abstract iv

List of Publications xiv

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Methodology . 2
1.3 Results . 3
1.4 Summary of Contributions . 3
1.5 Outline of the Thesis . 4

2 State-of-the-Art 5
2.1 Definitions . 5
2.2 Incentives . 7
2.3 Economic Based Resource Allocation . 8

2.3.1 Community Networks . 10
2.3.2 Cloud Systems . 10
2.3.3 Cloud Federations . 13

2.4 Trust in Resource Allocation . 14
2.4.1 Allocation with Rational Users . 16

xv

3 Middleware for Resource Regulation in Community Clouds 19
3.1 Community Network Clouds . 20

3.1.1 Commercial Community Clouds 20
3.1.2 Citizen Community Clouds . 21
3.1.3 Community Clouds in Community Networks 21

3.2 Architecture for Community Network Cloud 22
3.3 Incentives Based Resource Regulation . 24
3.4 Summary . 26

4 Managing Incentives with Trusted Users 29
4.1 Motivations . 30
4.2 System Model . 31

4.2.1 Nodes in Community Network . 31
4.2.2 Community Cloud Scenarios . 31
4.2.3 Resource Provisioning and Coordination 33

4.3 Effort-Based Incentive Mechanism . 33
4.3.1 Formulations . 33
4.3.2 Algorithm for Requests Processing 35

4.4 Performance Evaluation . 36
4.4.1 Evaluation with Simulation Experiments 37
4.4.2 Evaluation with Prototype . 40
4.4.3 Discussion . 46

4.5 Summary . 47

5 Managing Incentives with Untrusted Users 51
5.1 Motivations . 54

5.1.1 System Model . 54
5.1.2 Pricing Mechanisms . 56
5.1.3 Scheduling Algorithm . 57
5.1.4 Evaluation . 58
5.1.5 Discussion . 62

5.2 System Model . 63
5.2.1 Resource Allocation Auctions . 63
5.2.2 Distributed Auctioneer Simulation 65
5.2.3 Game Theoretical Model . 66

xvi

5.3 The Distributed Auctioneer . 67
5.3.1 General Framework . 67
5.3.2 Parallel Allocator Framework . 71
5.3.3 Resource Allocation Instances . 76

5.4 Performance Evaluation . 78
5.4.1 Hardware/Software Setup . 78
5.4.2 Double Auction Deployment . 79
5.4.3 Standard Auction Deployment . 80

5.5 Summary . 81

6 Conclusion 83
6.1 Ramifications and Collaborations . 84

6.1.1 Community Clouds . 84
6.1.2 Social and Economic Mechanisms 84
6.1.3 Scalability of Community Cloud Architectures 85
6.1.4 Supporting Service Selection . 85
6.1.5 Cloud Services in Guifi.net . 85

6.2 Future Work . 86

Bibliography 89

xvii

List of Figures

1.1 Overview of the proposed framework . 4

3.1 Framework for community cloud management system 23

4.1 Nodes in federated community cloud . 32
4.2 Details of the VM request operation by ON 36
4.3 Breakdown of outcome of requests . 40
4.4 Resource utilisation . 41
4.5 Components of cloud coordinator . 42
4.6 Overall resource utilisation of the four ONs 44
4.7 Distribution of credit among the four ONs 45
4.8 Ratio of fulfilled and rejected requests . 46
4.9 Resources assigned from different SN zones 48

5.1 Users connected to the service provider’s gateway 52
5.2 Value function 𝑣𝑖(ℎ, 𝑡) for user 𝑖 . 59
5.3 Percentage difference in social welfare as more users lie 60
5.4 Percentage difference in utility for low priority class ℎ0 61
5.5 Percentage difference in utility for high priority class ℎ1 62
5.6 Maximum gain in utility for a user from low priority class ℎ0 63
5.7 Maximum gain in utility for a user from high priority class ℎ1 64
5.8 Framework: Bid Agreement (BA) and Allocator (A) 68
5.9 Decomposition of the Allocator into Tasks 72
5.10 Parallel Allocator . 73
5.11 Running time for double auction . 79
5.12 Running time for standard auction . 81

xix

List of Tables

4.1 Configuration for each node in a zone with shared and total instances 38
4.2 Success ratio for nodes with different configurations 39
4.3 Two cases with different resource distribution between zones 47

xxi

List of Algorithms

4.1 Handling requests from ONs . 37
5.1 Scheduling algorithm for 𝜙, allocating ⃗𝑡 slots to 𝑁 users 58
5.2 Standard auction allocator . 77

xxiii

1
Introduction

Recent developments in communication technologies like the Internet, email and social net-
working have significantly removed the barriers for communication and coordination for
small to large groups, bringing down the costs that obstructed collaborative production be-
fore the era of the Internet. The ICT revolution ushered in group communication and col-
laborative production with popular applications now widely adopted, like social networking,
social bookmarking, user-generated content, photo sharing, andmanymore. Even infrastruc-
tures based on a cooperative model have been built, for example community wireless mesh
networks [Bra+13] gained momentum in the early 2000s in response to limited options for
network connectivity in rural and urban communities.

Community networks represent a social collective to build ICT infrastructures for serving
interests of the rural and urban communities. Volunteers in their local communities use
off-the-shelf network equipment and open unlicensed wireless spectrum to provide network
and communication services. These community networks have been popular, and have
recently also employed fibre optic links [Bai+15b], for example Athens Wireless Metropol-
itan Network (AWMN) [Ath16], Freifunk [Frei16], FunkFeuer [Fun16], Guifi.net [Gui16],
and Ninux [Nin16], are some of the networks deployed in Europe, having up to 28,000
nodes [Bai+15b]. Community networking thus presents an emerging model for the Future
Internet across Europe and beyond, allowing for communities of citizens to build, operate and

1

own open IP-based networks, and enabling individual and collective digital participation.
Community networks are based on the concept of reciprocal sharing, but this sharing is

limited to network bandwidth, and does not extend to other computing resources. Com-
munity clouds aim to address this limitation, enabling the sharing of all types of computing
resources, following the model of cloud computing, and assist in developing services and ap-
plications of local interest within community networks. Community cloud in this context
refers to the cloud hosted on community-owned computing and communication resources
providing services of local interest.

Community clouds, similar to community networks, are based on volunteer efforts, so
need to provide tangible or intangible benefits to the users in order to keep them engaged.
This requires that resource allocation mechanisms are designed to incentivise contribution
from the users, so as to enable the community cloud transition from inception through early
adoption to finally ubiquitous usage, leading to a sustainable and viable ecosystem.

1.1 Problem Statement

Theproblemof allocating shared resources efficiently and effectively is a challenging one, with
the need to provide various guarantees like to have maximal social welfare (better utility for
all the participants), to ensure truthfulness from the users (so they do not have incentives
to lie about their requests), and, at the same time, to be computationally efficient. This is
particularly important in the case of community network clouds where there is no centralised
entity responsible and in control of all the resources available in the community network.

The main objective of this thesis is to develop resource regulation mechanisms to incentivise
contribution and maximise the utility of the community cloud system, while guaranteeing trust
and ensuring truthfulness from its participants.

1.2 ResearchMethodology

The aim of this thesis is to devise practical and effective incentivemechanisms for community
network clouds, and we approach this mainly by the following means:

• Theoretical proofs. We theoretically prove the soundness of our proposed framework.

• Simulation evaluation. We conduct simulation experiments, to better understand the
behaviour of our mechanisms at scale, and to demonstrate their applicability.

2

• Prototype deployment. We implement and deploy prototype components in a testbed,
to get insights within the real-world constraints of the community networks.

1.3 Results

In this thesis, we present the complete framework of a community cloud system, in partic-
ular focusing on the resource allocation components. Figure 1.1 shows how we approach
this framework, and we include the chapters and sections where we discuss different aspects
of the framework. We discuss the overall architecture in Chapter 3. We present the vision
behind the community cloud system in § 6.1.1, and discuss the relevance of the social and
economic context of community networks in devising mechanisms to drives the adoption of
the community network cloud in § 6.1.2.

At the core layer, we study how scalability affects the design of community cloud system
in § 6.1.3. Within middleware layer, we emphasise the resource regulation components. For
a community of local users with strong social ties ensuring trust, we propose resource regu-
lation mechanisms in Chapter 4. For larger communities which lack trust among the users,
we propose distributed auctioneer in Chapter 5. Another service within middleware layer is
a decision support system (DSS) to facilitate selection of services, which we touch upon in
§ 6.1.4. Within services layer, we need applications that provide utility for the members of
the community network, which we discuss in § 6.1.5.

1.4 Summary of Contributions

The contributions of this thesis include:

1. For local communities of trusted users, this thesis proposes incentive-based resource
regulation mechanisms. These mechanisms are computationally efficient and incur
minimal overhead, and ensure contribution from the participants for the viability of
the community cloud system.

2. For a community of untrusted users, this thesis proposes distributed virtual auctioneer
using a novel distributed framework for devising Nash equilibria distributed simula-
tions of the auctioneer that are resilient to asynchrony and coalitions. This can be used
as a building block to implement resource allocation in a decentralised community
cloud system.

3

Resource
Regulat ion

Dist r ibuted
Auct ioneer

Communi ty Network Cloud

Hardware and Network ing Layer

Core Layer

Services Layer

Front End Layer

Ch. 5

§ 6 .1.3

Ch. 4

Trusted Users Unt rusted Users

§ 6 .1.1

Ch. 3

DSS

§ 6 .1.4

Middleware Layer

§ 6 .1.2 § 6 .1.5

Figure 1.1: Overview of the proposed framework

1.5 Outline of the Thesis

This thesis is organised as follows. Chapter 2 presents the state-of-the-art. Chapter 3 discusses
the middleware for resource regulation in community network clouds. Chapter 4 proposes
incentive mechanisms for a community of trusted users. Chapter 5 devises a framework for
managing incentiveswith untrusted users. Chapter 6 concludes the thesis and indicates future
directions.

4

2
State-of-the-Art

Community network cloud is a social collective model, and needs contribution from its par-
ticipants for its sustainability and growth. This requires addressing the challenging and con-
crete problem of effective resource regulation. In this chapter, we present an overview of the
state-of-the-art in resource regulation, and study the role of the incentives and trust in ensur-
ing users’ participation.

2.1 Definitions

We start by introducing the terms used throughout this chapter and the rest of the thesis.

Community Network Cloud Community network clouds get formed when cloud services
are provisioned using resources contributed by the members of the community network to
build services and applications of local interest. In this thesis, we often use the term com-
munity clouds interchangeably for community network clouds, unless otherwise stated which
will be clear from the context.

Dominant Strategy A strategy is dominant for a player when it provides better utility to her
than any other strategy, no matter what strategy other players choose.

5

Efficiency Efficiency refers to an increased aggregate valuation for all the users. An optimal
solution maximises the social welfare in the system.

Ex Post Budget Balance Budget balance is the property that after the resources have been
allocated the total value paid by users covers the total payments made to the providers.

Ex Post Nash Equilibrium Ex post Nash equilibrium means that the system reaches a Nash
equilibrium no matter what a scheduling adversary does.

Fairness A fair resource allocation assigns each user a share of system resources which is
close to its share of total system funding. In other words, fairness refers to minimising envy
between the users resulting from allocation of resources.

Free Riding Free riding refers to the situation where users consume public goods or
resources without any or minimal contributions from their side, which results in under-
provision of these goods or resources.

Incentive Compatibility Incentive compatibility means that there is no incentive for any
player to lie about her private information.

Individual Rationality Individual-rationality means that every player truthfully participat-
ing in the allocation is expected to gain no less utility than by not participating.

Nash Equilibrium A joint strategy involving all players in a game is a Nash equilibrium if
no player can achieve better utility by unilaterally deviating, provided all the other players
continue to play their role as suggested by the joint strategy.

SocialWelfare Social welfare is an aggregate over the utility of all the players in an allocation.

Solution Preference Solution preference means that no player has the incentive to fail the
algorithm. Even though players have different preference over the outcomes of an algorithm,
no player can gain if the algorithm fails and there is no solution.

6

Strategy Proofness Strategy proofness means that the dominant strategy for all the players
is to report their true valuations to the allocator, and therefore no player has any incentive to
cheat.

Utility Utility function in game theorymeasures preference over the allocation of resources,
and represents satisfaction experienced by the players.

Vickrey-Clarke-Groves (VCG) Mechanism VCG is a generic truthful mechanism for achiev-
ing a socially-optimal solution [NR99]. It is a generalisation of a Vickrey–Clarke–Groves
auction, where each individual is charged a “social cost” equivalent to the harm they cause to
other bidders.

VirtualMachines Virtual machine (VM) is an emulation of a computer system, where hard-
ware resources, like computing, memory, and storage, are packaged as virtual instances.

2.2 Incentives

Many volunteer and distributed platforms appeal to users’ altruistic instincts. Projects like
SETI@Home [And+02], BOINC [And04], and Folding@home [Beb+09] propose to solve
challenging scientific problems, which encourage users to contribute the idle resources of
their machines. Other projects like PlanetLab [Chu+03] and various Grid systems [FK03]
require some mutually-agreed upon level of contribution as a pre-condition for participating
in the system.

Other earlier popular peer-to-peer (P2P) file sharing programs like Kazaa, Gnnutella, Nap-
sters, and eMule among others [RD10], allowed users to upload and download files for free,
and often suffered from the issues like free riding, under-provisioning, etc. This has led to
designing incentive mechanisms in P2P systems to ensure that users actively contribute. For
example, BitTorrent, using reciprocity principle, only allows users to download content if they
also upload part of it to other BitTorrent users. Similar incentive mechanisms have been ex-
tensively studied for other P2P systems [BCF07; She+10; ZAM10].

Community networks are also based on the principle of reciprocal sharing, and offer vari-
ous tangible and intangible benefits to their users. Bina andGiaglis [BG06] have explored vari-
ous psychological and social motivations of the users of AWMN community network. Recip-
rocal resource sharing is, in fact, part of the membership rules or peering agreements [Pic05]

7

ofmany community networks. TheWireless Commons License (WCL) [Wir10] ofmany com-
munity networks states that the network participants that extend the network, e.g. contribute
new nodes, will extend the network in the same WCL terms and conditions, allowing traffic
of other members to transit on their own network segments. Therefore, resource sharing in
community networks from the equipment perspective refers in practice to the sharing of the
nodes’ bandwidth. This sharing, done in a reciprocal manner, enables the traffic from other
nodes to be routed over the nodes of different node owners, and allows community networks
to successfully operate as IP networks.

Most of these incentivemechanisms are based on the idea of reciprocating individual’s con-
tribution, anybody who contributes more value to the system is allowed to reap more benefits
from it. However, this does not take into account that inmany cases not all users are as rich in
resources as others. Participatory Economics (Parecon) model envisions rewarding the users
based on their effort, which is defined as contribution as a fraction of their capacity, instead
of rewarding purely on the basis of their absolute contribution [Alb04]. Effort-based incent-
ives [Rah+10; Veg+13; Veg15] have been proposed based on Parecon principle to achieve
fairness and improve social welfare, while better addressing the resource heterogeneity in the
system. For instance, Rahman et al. [Rah+10] apply effort-based incentives for file sharing in
BitTorrent where some users with slow Internet connections cannot upload as much content
as others. When deciding how much a user can download, they propose factoring in user’s
connection speed in addition to the data the user has uploaded. Their results show that the
effort-based mechanism remains incentive-compatible and improves efficiency and fairness
as compared to purely contribution-based approach. We also turn to effort-based incentives
inChapter 5when devisingmechanisms for resource sharing between the users of community
network clouds.

2.3 Economic Based Resource Allocation

Most distributed systems have limited resources that need to be shared by many nodes. For
instance, in a network there is limited bandwidth that needs to be allocated to multiple nodes.
In cloud applications, virtual machines (VMs) need to be allocated to different cloud users.
Resource allocation is, therefore, a key problem in distributed systems, and there is a vast
literature on resource allocation of shared resources, whether they be network bandwidth, or
other general computing resources.

Distributed resource allocation is particularly challenging when nodes operate under dif-

8

ferent spheres of control and may not be willing to cooperate. Namely, a resource allocation
strategy that assumes that all nodes execute a given algorithm may break if nodes may extract
benefits by deviating from the expected behaviour. Many examples of this problem can be
found in the literature. Theworks of [Lee+07] and [Xia+13] illustrate how a network usermay
attempt to monopolise the bandwidth utilisation if it has the opportunity. There is evidence
that programmers can instrument their code to get an unfair advantage of several Unix sched-
ulers [GC05]. In shared infrastructures, like Grid systems, participating users try to maxim-
ise their own usage to the detriment of the others [Lai+04]. Dynamic wireless spectrum al-
location suffers from unfair manipulation [Zho+08]. Social cloud computing [Cat+14] and
cooperative computing systems like BitTorrent [Liu+10] suffer when users act selfishly in con-
suming resources.

An approach that has emerged as a viable alternative for the problem above is to use
economic models to address resource allocation, in particular by resorting to auction sys-
tems [Hur73; RS81]. As a result, an extensive literature exists on the use of several types of
auctions to perform resource allocation in distributed systems [NR99; Niy13; Wal+92]. In
particular, the advent of the cloud computing model, where many clients may compete for
the resources managed by one or more providers, has spurred the usage of different auction
mechanisms for the cloud [WRM12].

In these approaches, users are modelled as non-cooperative rational players who are will-
ing to pay for using resources or get paid for providing those resources. Specifically, users
declare to an auctioneer the preference for different allocations of resources, and the auction-
eer executes some auction mechanism to derive an allocation between users and resources
that maximises social welfare (preferences of users for the allocation), and the payments to be
performed or received by each user. The aim is to obtain an allocation with a social welfare
as close as possible to the optimal while ensuring truthfulness from the users, such that they
do not have incentives to lie about their bids. In addition to maximal social welfare and truth-
fulness, other guarantees may be provided, including computational efficiency and budget
balance (the payments made by the users outweigh the payments received).

In the following, we look at the state-of-the-art in economic-based resource regulation,
first for community networks (§ 2.3.1), and then for cloud systems (§ 2.3.2) both in the con-
text of virtual machines and network bandwidth. Next, we study managing resource sharing
between federations of cloud providers (§ 2.3.3) .

9

2.3.1 Community Networks

Various pricing schemes, game theoreticmechanisms and auction-based approaches for arbit-
rating network resources have been proposed and used in practice. Maillé and Tuffin [MT14]
provide a comprehensive survey of the historical approaches and the current state-of-the-art
from the viewpoint of telecommunication services.

Community networks comprise of wireless mesh and multi-hop networks, and require co-
operation among its users for proper functioning. Game theory, both non-cooperative and
cooperative, has been applied in literature for studying the incentives of its user and devis-
ing network allocation mechanisms. Xiao et al. [Xia+13] propose a general framework for
studying the user cooperation in a network, and formalise the relationship between incentive,
fairness and efficiency for cooperative networks. Zhou et al. [ZLL14b] develop a Vickrey-
Clarke-Groves (VCG) based mechanism for non-cooperative users. Since VCG mechanism
cannot be directly applied because of the high computational complexity, theymodify it by us-
ing relaxation-based greedy algorithm in such a way that it still guarantees strategy-proofness
and efficiency. Lee et al. [Lee+07] focus on the problem of backbone construction with selfish
users in a community network, who want others to relay their packets but want to avoid relay-
ing packets for others. They propose an incentive-compatible protocol based on Volunteer’s
Timing Dilemma from non-cooperative game theory. Their findings show that using their
protocol the backbone forms quickly, with characteristics comparable to protocols designed
only for altruistic users.

Community networks like Guifi.net, in practice, also put emphasis on social sharing agree-
ments [Pic05; Wir10], and when conflicts occur enforce these agreements through social
mechanisms [Bai+15b]. For our context of community network clouds, we accept the guar-
antees implied by the community networks, and assume that the network is owned by the
whole community so the traffic within the network between any two nodes is ensured to
transit over intermediary nodes. Therefore, when we address the issue of bandwidth reser-
vation in Chapter 5, we focus solely on the gateways present in the community network that
provide access to the Internet.

2.3.2 Cloud Systems

With respect to the general computing resources, there has been a lot of existing work in
the context of Grid systems [FK03; BAV05; CW12] and shared infrastructures like Planet-
Lab [Leo13]. For instance, one of the system implemented for PlanetLab is Tycoon [Lai+04],

10

which is a distributed marked-based resource allocation system, implementing proportional
fairness using decentralised isolated auctions. Tycoon allows users to differentiate their jobs
based on their importance by specifying different bid amounts. Auctioneers manage only
local resources, and users submit separate bids to these auctioneers. The bids remain valid
until a user’s credit gets low, so themechanism reduces manual bidding overhead by the users.
Resources are assigned in proportion to the bid amounts using a best-effort approach. This
allows Tycoon to achieve efficient usage of resources, while maintaining little allocation over-
head.

Economic-based resource allocation mechanisms have been extensively explored for
cloud computing [NFL12; Pop+12; Shi+14; WRM12; Zha+13; Zha+15b; Zhe+14; Zhe+15].
Amazon, one of the leading providers of public cloud services, was among the first to offer
cloud resources using market-driven prices [Agm+13]. Besides investigating how a provider
can use economic-basedmechanisms tomaximise the utilisation of its resources and increase
its revenue [WRM12], the recent research has also looked into devising the best strategies
for the users to bid for the cloud resources in such a market [Zhe+15]. Many works, for
instance [ZLW14; Zha+15b], employ the celebrated Vickrey-Clarke-Groves (VCG) mech-
anism [NR99] for achieving truthfulness and a trade-off between maximal social welfare
and computational efficiency. The challenge in applying VCG mechanisms in clouds is
that in most of these problems, finding an optimal allocation is NP-hard, and so traditional
VCG mechanism cannot be applied. One key line of work has been to use randomised
algorithms [ZLW14; Zha+15b], or linear programming decomposition techniques [NL13;
Zha+15a], to achieve strategy-proofness with a computationally feasible solution, albeit
achieving less than optimal social welfare. The overall aim is to look for solutions with lower
computational complexity, and higher social welfare, while ensuring strategy-proofness.

Virtual Machines Allocation

Cloud computing employs virtualization to package computing resources like CPU time,
memory, and storage as virtual machines (VMs). Therefore, resource allocation in cloud, for
the most part, deals with composing VMs from the hardware resources, and allocating them
to the users in the most efficient manner. Cloud providers offer a variety of VM instances
of different types, where type refers to the composition of different resources packaged in
the VM instance. For example, a VM consisting of 2 virtual CPU units, 8 GB RAM and 100
GB storage is one type of VM. Zhang et al. [Zha+15b] extend this to allow users to request
customised dynamically assembled VM types, bundling VMs from different geo-distributed

11

data centres of the provider. They use smoothed analysis and randomised reduction to
design a randomised, highly efficient auction mechanism. Their mechanism is general and
expressive enough to encompass various cloud scenarios, and achieves truthfulness (in ex-
pectation), polynomial running time (in expectation), and (1 − 𝜖)-optimal social welfare (in
expectation) for resource allocation in a geo-distributed cloud, where 𝜖 ∈ (0, 1).

Zhang et al. [ZLW14] approach combinatorial auctions of heterogeneous VMs by model-
ling social welfare maximization as a mixed linear integer program. They design an efficient
𝛼-approximation algorithm, with 𝛼 ∼ 2.72 in typical scenarios. They use this algorithm as
a building block for designing a randomised combinatorial auction that is computationally
efficient, truthful in expectation, and guarantees the same social welfare approximation factor
𝛼. They utilise a pair of tailored primal and dual linear programs (LPs) to decompose frac-
tional solution of social welfare maximization problem into a convex combination of integral
solutions.

Bandwidth Reservation

The focus remains mostly on efficiently allocating VMs in the cloud, even though the band-
width, both upstream and downstream, to connect to VMs in the cloud is metered. Band-
width allocation and reservation gains significance, in particular when the applications are
network-intensive or have real-time constraints. Some prime examples are video-streaming,
video-on-demand and cloud-based gaming. Recent work has explored various economic
based bandwidth allocation schemes for public clouds [Gui+14; Guo+13; NFL12; Pop+12;
SL14; Zhe+14]. The emphasis in the cloud has been on having bandwidth reserved with ser-
vice level guarantees for the cloud applications.

Gui et al. [Gui+14] propose VCG-auction based mechanisms for reserving bandwidth at
the multiple geo-distributed data centres of the cloud provider. The users submit bandwidth
reservation requests separately for each of the data centres. In case the users can accept par-
tially fulfilled requests, i.e. bandwidth reserved up to the maximum requested, a solution can
be calculated using linear programming in polynomial time, which achieves both optimal so-
cial welfare and strategy-proofness. However, if partial reservations are not permissible, the
allocation problem is NP-hard, so the above polynomial time algorithm cannot be used to
calculate optimal allocation. The authors propose a heuristics-based greedy algorithm that
guarantees strategy-proofness, though provides less than optimal social welfare. Zheng et
al. [Zhe+14] focus on a multi-cloud scenario where users need to reserve bandwidth from
different cloud providers, because they have strict requirements on the amount of bandwidth

12

for guaranteeing their quality of services. They model this open market of cloud providers as
a double-sided auction, where providers also submit bids to the auctioneer besides the users,
and propose strategy-proof mechanisms based on McAfee double auction [MS83].

Shen and Li [SL14] propose a bandwidth pricing model, a network bandwidth sharing
policy and flow arrangement policies, and use non-cooperative game theory analysis. Their
policies encourage cooperation among the tenants of the cloud infrastructure, who are in-
centivised to prefer uncongested links and constrain congestion. Guo et al. [Guo+13] focus
on the bandwidth available within the data centre infrastructure, on the links connecting the
multiple VMs owned by the tenants. They apply cooperative game-theoretic framework to
design a distributed algorithm to achieve efficient and fair bandwidth allocation correspond-
ing to the Nash bargaining solution.

2.3.3 Cloud Federations

Aside from public clouds, another emerging model in cloud computing involves cloud pro-
viders trading of VM resources among themselves, referred to as federating their individual
clouds. There are various terms for this scenario in literature such as federated clouds, Inter-
cloud, community clouds, cloud brokerage, etc. In this case, cloud providers agree to pro-
vision VMs for each other, for instance one provider can solicit additional resources from
others to satisfy peaks in demands. Such a federated or community cloud presents the chal-
lenge of a free market, where participants have the incentive only to accept those resource
exchanges that are profitable for them. Zhao at al. [ZLL14a] develop a distributed market-
oriented model for the resource negotiation and trading problem in such a community cloud.
They use this model to propose a multi-agent based approach that provides an efficient and
fair resource allocation for a group of autonomous cloud providers. They also consider re-
source trading under budget constraints, and based on a directed hypergraph model, present
effective heuristic-based distributed protocols to achieve resource allocation within budget
limits.

Social cloud computing [Cat+14; Pun+13] similarly focuses on trading resources between
cloud providers, who in this case are individual users of online social networks, like Facebook,
Twitter, etc. Punceva et al. [Pun+13] propose a decentralised resource sharing model, and
use virtual currency to incentivise cooperation without requiring a central reputation man-
agement system. They differentiate between intra-community and inter-community sharing,
where a community consists of a group of “friends” on social networks, because the trust in-
herent within a tightly knit community aids in designing a more flexible virtual currency rep-

13

resentation. Caton et al. [Cat+14] focus more on improving how the providers are matched
to the users in a social cloud. They propose heuristics based matching algorithms for bidirec-
tional preference-based socially-aware resource allocation, with the aim to optimise social
welfare and allocation fairness.

Li et al. [Li+13] study how individual cloud providers can maximise their profits through
better resource trading and scheduling. They apply a double auction-based mechanism,
which is strategy proof, individual rational, and ex-post budget balanced. Based on this
auction mechanism, they propose an efficient and dynamic resource trading and scheduling
algorithm, which carefully computes the true valuations of VMs in the auction, and aims
to optimally schedule stochastic job requests onto the VMs. Palmieri et al. [Pal+13] focus
on scheduling resources within federated clouds, and present a fully distributed agent-based
game-theoretic scheme for scheduling computing resources between providers in federated
clouds. Their scheme is based on independent, competing, and self-interested task execution
agents, with the goal to achieve an optimum social welfare criteria towards a Nash equilib-
rium solution, using a slotted time model to provide advance reservation of resources in a
fully distributed manner.

For the scenario of community network clouds, we consider members of community net-
works as cloud providers, and present efficient incentives based mechanisms for allocating
cloud resources in Chapter 4.

2.4 Trust in Resource Allocation

The issue of trust in auctions is well-known and well-studied in economic theory, for various
type of auctions [San00]. In particular Vickrey auction, which forms basis of the celebrated
VCG mechanism [NR99], is very susceptible to a lying auctioneer [San00]. VCG mechan-
ism is often used in distributed systems and cloud computing to ensure strategy-proofness
in resource allocation, but it suffers from significant issues because of the trust required in
the auctioneer [San00]. There are numerous distributed auction schemes proposed in literat-
ure [Guo+13; Zho+08; Lai+04], but the fact that they are decentralised in itself does not imply
trust. Without careful design, one or more agents participating in the distributed auction can
affect the results to their advantage.

The issue of an auctioneer cheating in second-price sealed-bid auctions, similar to VCG
auctions, has been so severe that fraud was commonplace in the stamps auctions of late 19th
and 20th century [Luc00b], which provide the first recorded example of using Vickrey auc-

14

tions in practice. More recently, such second-price auctions have been used by eBay [Luc00a]
to sell goods, and by Yahoo, Google, and other Internet search companies to sell keywords-
based online advertising [EOS07]. It has been suggested that such auctions are viable for these
Internet companies, in the absence of any trust, because these companies have low commis-
sions, and conduct so many trades that it is not in their interest to cheat [Luc00b]. But the
issue of mistrust in the auctioneer has been prevalent, so much so that when Amazon intro-
duced its “spot instances” service usingmarket-based pricing, there were doubts that Amazon
was not using supply and demand to set the prices, but instead employed a mathematical re-
gression function to set the rates [Agm+13].

This lack of trust can create various problems for resource allocation in decentralised sys-
tems, and we go through a few examples here. InterCloud allows for multiple cloud providers
to federate their resources to form a cloud market [GB14]. The current approaches mostly
rely on bilateral agreements, and price negotiation. However, as the number of providers in-
creases this arrangement will no longer be tenable. The providers cannot put absolute trust in
anyone among them or in a third party to execute the auction fairly. Social clouds [Cat+14]
allow exchanging resources between users of online social networks. Here, as well, the users
have to trust the allocation and resourcematching algorithm, which even if it runs distributed
on multiple machines, cannot be trusted, since some of the users can tweak the allocator to
their advantage. Secondary wireless spectrum markets [Zho+08; LLZ15] also apply auctions
to ensure strategy-proofness, but again fail if a trusted auctioneer is not available. BitTorrent,
like other similar popular P2P file sharing systems, regulates access to available resources de-
pending on the users’ contribution. However, users can easily use their BitTorrent clients to
falsely report their contribution to be high. To counter this, BitTorrent private communities
have a central mediator that dictates rules for uploading and downloading content, and tracks
contribution and consumption by the users [Liu+10]. However, the administrators and priv-
ileged users can affect the central mediator to get unfair advantage. Resource allocation in
shared infrastructures like Grid systems also require incentive-compatible solutions [Lai+04;
KA06; Buy+02], and many of the proposed approaches in the literature apply only when a
trusted entity is available for executing the auction mechanisms.

A cheating auctioneer can pose a number of problems. The major among them, that we
focus on, is that the winning bids may not be selected fairly, and the payment each winning
bidder has to make is not calculated properly. In open-bid auctions, like English and Dutch
auctions [Kri09], the above two issues are not a major problem as the bidding process is open
to all the participants. In sealed-bid first price auction, each winning bidder pays the amount
she quoted, so even though the auctioneer can cheat on selecting the winning bidders, at least

15

the winning bidders are sure they are paying the correct amount. In sealed-bid second price
auctions, the auctioneer can even cheat on the price the bidder has to pay, and this is a major
issue [San00].

Other issues with auctions that we do not consider here include bidders cooperating to-
gether to artificially lower the price, the providers making a coalition to keep the price high,
or the auctioneer learning frombuyers’ preference to increase the reserve bid price. We do not
focus on these and other issues, but in recent literature cryptographic zero-knowledge based
algorithms have been employed to tackle these problems [MR14; LAN03]. Some of these solu-
tions, because of their high computational complexity, are better suited to infrequent auctions
of highly valuable goods, for example wireless spectrum auction by a government, than for
integrating in mechanisms for distributed systems where the auctions are often repeated at
short intervals.

2.4.1 Allocation with Rational Users

Most of the existing approaches, as we have discussed above, assume a single trusted entity or
multiple trusted entities coordinating together for executing the resource allocation mechan-
ism. Unfortunately, this is an unreasonable assumption in many of today’s fully decentralised
systems, where all nodes are either resource consumers, resource providers, or both. In this
case, there is no natural candidate that can be trusted by all other nodes to run the auction
algorithm faithfully, given that any node may extract some benefit by perturbing the auction
result. In some sense, all current distributed systems that rely on centralised auctions to per-
form resource allocation are not fully decentralised, because they depend on a unique central
point of control, which is the trusted node that runs the auction algorithm. Similarly, in the
context of community network clouds, that comprise of untrusted service providers, such a
trusted entity in most cases is not feasible, and even if it existed, can impede the scalability.
This leads to the observation that there is still a substantial gap that needs to be bridged to
apply these results in fully decentralised settings. None of the above works, to the best of our
knowledge, address the problem of resource allocation in the absence of a trusted auctioneer.

The problem of simulating the behaviour of a trusted entity in an environment with only
rational players has been approached in the literature of distributed systems [Aiy+05; HT04;
Abr+06; ADH13; Afe+14]. Aiyer et al. [Aiy+05] presented BAR model which involves Byz-
antine (or faulty) and rational players, as well as acquiescent players who follow the suggested
protocols. They used BARmodel to develop fault tolerant cooperative services using state ma-
chine replication. In [HT04; Abr+06], the authors addressed the particular problems of secret

16

sharing and multi-party computation assuming the existence of a trusted mediator, and then
studied conditions under which it is possible to simulate the mediator through a distributed
protocol. They discussed 𝑘-resilient Nash equilibria so that even if a whole coalition of up to
𝑘 players chooses joint strategies to defect, still no member of the coalition can increase its
utility. Their results apply even if there are only 2 players, so that multi-party computation
can be performed with only two rational agents.

Abraham et al. [ADH13] devised 𝑘-resilient equilibria solutions for the classic problem of
electing a leader in an anonymous network in the presence of rational agents. They considered
existence of𝑘-resilient equilibria for several topologies like a unidirectional ring, bidirectional
ring, or completely connected network, in both the synchronous and asynchronous case. They
showed that a fair ex post 𝑘-resilient equilibrium requires 𝑛 > 2𝑘, i.e. the number of agents
should be more than twice the size of the largest coalition for the system to reach equilibrium.
They also highlighted how involving cryptographic techniques can help achieve equilibrium,
and result in more computationally efficient algorithms.

Afek et al. [Afe+14] proposed a building blocks approach for devising distributed 𝑘-
resilient implementations to solve common distributed computing problems like leader
election, consensus, and renaming. They extended the ideas from [ADH13] to develop build-
ing blocks that are all resilient in the presence of rational agents, and coalitions of rational
agents to some extent as well. They differentiated between different utility functions for dis-
tributed algorithms, e.g., utilities based on communication preference, solution preference,
and output preference. Based on these preferences, they formulated two basic building blocks
for game theoretic distributed algorithms, a wake-up building block and and a knowledge
sharing building block, that are resilient to these preferences. These blocks formed part of
their solutions to leader election, consensus, and renaming problems.

None of these works devised distributed protocols for simulating the role of an auctioneer
in an auction. We build on the work of [ADH13; Afe+14] to develop a distributed virtual
auctioneer, which we focus on in Chapter 5.

17

3
Middleware for Resource Regulation in

Community Clouds

Community clouds can have different interpretations depending upon the specific require-
ments and characteristics of the community, and how the infrastructures are deployed and
services are provisioned. We focus, in our thesis, on the collaborative model of provisioning
community cloud services based on volunteer computing paradigm as laid out in [MB09]. In
this chapter, we explore the background of community clouds, and focus specifically on the
problem of resource regulation. The chapter is organised as follows.

• We first look at the general idea of community clouds, and how they are used in the
commercial sector (§ 3.1.1).

• Next we focus on citizen community clouds built collaboratively by the volunteers
(§ 3.1.2).

• Then we study how the community networks provide an excellent context for deploy-
ing community clouds (§ 3.1.3).

• We present the overall architecture for realising a community cloud system (§ 3.2).

• We discuss different scenarios and contexts for applying resource regulation in a com-
munity network cloud(§ 3.3).

19

3.1 Community Network Clouds

The concept of community cloud computing has been introduced in its generic form [MG11]
as a cloud deployment model in which a cloud infrastructure is built and provisioned for ex-
clusive use by a specific community of consumers with shared concerns and interests, owned
and managed by the community or by a third party or a combination of both. In this thesis,
our focus is on the clouds built by the community, and for the community, relying on the re-
sources available within community networks. We first discuss the general idea of community
clouds, before going into the detail of community network clouds.

3.1.1 Commercial Community Clouds

Community cloud is one of the many different deployment models for cloud comput-
ing [MB16]. The most common and popular one, the public cloud, offers services of generic
interest over the Internet, available to anybody who signs in with its credentials. On the other
side, the private cloud model aims to provide cloud services to only a specific user group,
such as a company, and the cloud infrastructure is isolated by firewalls avoiding public
access. Finally, when a private cloud is combined with the public cloud, for instance some
functionality of the cloud is provided by the public cloud and some remains in the private
cloud, this is referred to as hybrid cloud. The community cloud [KFN16], bridges in different
aspects the gap between the public cloud, the general purpose cloud available to all users, and
the private cloud, available to only one cloud user with user-specific services.

Community clouds are implemented using different designs depending upon the require-
ments. One common approach is that a public cloud provider sets up separate infrastructure
and develops services specifically for a community to provide a vertically integrated solution
for that market. Similarly, a third party service provider can focus on a particular community
and only specialise in building tailor-made solutions for that community. Another option is
that community members that already have expertise in cloud infrastructure come together
to federate their private clouds and collectively provision cloud services for the community.

Enterprises belonging to the same sector often use similar but independent cloud solutions,
and comparing these solutions, it can be seen that these clouds are optimised in similar as-
pects which allow these enterprises to gain advantages for reaching common goals. Instead
of these private clouds, building a community cloud for such enterprises shares the cost of
the cloud solutions among them, and may also offer collaborations for mutual benefit even
among competitors. Such commercial community cloud solutions are a reality nowadays in

20

several application areas and have been deployed in particular in the financial, governmental
and health sector, besides many others, fulfilling the community-specific requirements, as
evident from [Nys12; Opt12].

3.1.2 Citizen Community Clouds

Community clouds can also be built by the citizens in a bottom-up fashion through collaborat-
ive efforts [KFR15], by using resources contributed by individual users by either solely relying
on user machines or using them to augment existing cloud infrastructures. The idea of build-
ing cloud infrastructure using resources contributed by a community of users [MB09], fol-
lows on from earlier volunteer distributed computing platforms like SETI@Home [And+02],
BOINC [And04], Folding@home [Beb+09], HTCondor [TTL05], PlanetLab [Chu+03], and
Seattle [Cap+09], amongmany others, and in general from the peer-to-peer systems [She+10]
that focus on collaborative resource sharing.

There are a few such research prototypes for citizen community clouds that provide not the
complete systembut someof the components as a proof of concept. TheCloud@Home [DP12]
project aims to harvest resources from the community formeeting the peaks in demand, work-
ing with public, private and hybrid clouds to form cloud federations. The P2PCS [BMT12]
project has built a prototype implementation of a decentralised peer-to-peer cloud system,
with basic support for creating and managing virtual machines using Java JRMI techno-
logy. The Clouds@home [Yi+11] project focuses on providing guaranteed performance
and ensuring quality of service even when using volatile volunteered resources connected
by Internet. Jang et al. [Jan+14] implement personal clouds that federate local, nearby and
remote cloud resources to enhance the services available on mobile devices. Social cloud
computing [Cha+12; Cat+14] takes advantage of the trust relationships between members
of the online social networks to motivate sharing of storage and computation resources, by
integrating with the programming interfaces (API) of the social network services which
facilitates the establishment of mutual trust and resource sharing agreements.

3.1.3 Community Clouds in Community Networks

Community networks [Bra+13] are already based on the principle of sharing, though only
of bandwidth, but the social aspects and community nature makes it easier to extend this
sharing to other computing resources. The strong sense of community and technical know-
ledge of participants of such networks are some strong points which are conducive to building

21

cloud applications tailored to local needs, built on infrastructure provided by the community
members.

Community network clouds build on the success of community networks and aim to
provide services and applications of local interest for the communities by applying the
model of cloud computing. Community network clouds fit nicely with the recent shift in
exploring alternative approaches to large-scale data centres based public cloud computing,
which include Inter-Cloud and federated clouds (where multiple public cloud providers work
together), hybrid clouds (where enterprises combine their own cloud infrastructure with the
public clouds), and edge clouds using nano data centres [Sat+09] (where smaller clusters are
deployed at the edges of the network to avoid latency and improve content-delivery). These
initiatives provide an excellent backdrop to explore the role of the community network clouds
in enhancing the value proposition of the community networks, since an infrastructure of
nano data centres [Sat+09] to be deployed in a community network has to fit well with specific
socio-economic and technical context of the community networks [KF14b]. For example,
Guifi.net community network has deployed community edge cloud using their Debian-based
Cloudy distribution [Bai+15a].

3.2 Architecture for Community Network Cloud

We foresee realising the community cloud by deploying a community cloud platform tailored
to the specific infrastructure and context of community networks. A standard cloud sys-
tem is usually a centralised platform designed to perform resource management. There are
quite a few well known cloud platforms for managing public and private clouds, like Open-
Stack [Ope16b] and OpenNebula [Ope16a] among others. For community network cloud,
we focus on providing a framework that would allow users to share resources and access
collaboratively-built services in a distributed manner.

We propose a framework that can serve as the core of a community cloud system. Our
community cloud framework is a distributed bottom-up resource sharing and collaborative
services platform. This is achieved by adopting a layered architecture, as shown in Figure 3.1.

1. The Hardware layer provides the physical infrastructure needed to run the cloud ser-
vices and applications. The hardware in the community network customarily consists
of management nodes, client nodes, routers and the communication infrastructure,
along with any computation, storage and other resources attached to the nodes.

22

CLI GUI APIFront End Layer
Co

re
 L

ay
er

H
ar

d
w

ar
e

La
ye

r
M

id
d

le
w

ar
e

La
ye

r
Se

rv
ic

es
La

ye
r

Storage Video Network
Cloud

Services

Cloud
Coordinator

Resource
Regulation

Trusted
Auctioneer

Support
Services

VM
Controller

VM
Monitor

VM
Scheduler

Management
Services

VMs VMs VMs

Figure 3.1: Framework for community cloud management system

2. The Core layer is responsible for managing the hardware as virtualised resources. It
consists of components, such as a manager for the hosts and the network as well as a
controller, scheduler, monitor, and data storage for virtual machines (VMs).

3. The Middleware layer amalgamates the resources from multiple local community
clouds, providing an integrated and consistent view of the cloud system to the cloud
services. This can comprise of a variety of support services:

• Cloud coordinator and services broker components for assisting in combining
resources from multiple cloud providers.

23

• Incentives-based resource regulation and allocation components are important
as a driver for users’ participation for the sustainability and growth of the com-
munity cloud model. Our proposed incentive mechanisms in Chapter 4 can
provide the building blocks for these components.

• Trusted auctioneer module for auction-based resource allocation schemes. Re-
source allocation component needs to be trusted by the users, and in turn the
users need to follow the prescribed polices for the system to function properly.
We return to this issue in Chapter 5, and devise a virtual distributed trusted auc-
tioneer to integrate into the community cloud framework.

• Other support services may include, among many other:

– Network coordination component to identify and manage different local
clouds.

– Service discovery component to keep track of the services provided by the
various clouds.

– Authentications and auditing components to support resource regulation.

4. The Services layer integrates useful services and applications providing utilities for
the community networkmembers to encourage their participation. Common services
include storage, video streaming, video on demand, IP telephony, and network applic-
ations.

5. The Front-end layer provides the interface to interact with the infrastructure of the
community cloud, including command line interfaces (CLI), graphical user interfaces
(GUI), application programming interfaces (API), and any other tools for assisting in
the development of cloud services and applications.

3.3 Incentives Based Resource Regulation

Community network clouds, like other volunteer computing platforms, not only need to solve
the technical challenges to be feasible but also address the social and economic context to en-
gage their participants. The existing social relationships among the users provide the found-
ation for building community cloud services. Just as in social computing [Cat+14], relation-
ships from online social networks provide the backdrop to provision cloud services, in the
case of community network clouds, we believe the existing relationships among users of the
community networks will make it possible for the model to be adopted.

24

The community networks provide the context andmotivating scenarios for developing the
proposed solutions that are discussed in Chapters 4 and 5; however, our proposals and find-
ings are general enough for being applicable to other related fields. In order to realise clouds
in community networks, we can take the existing software and technology, and adapt and
extend it to better fit with the characteristics and constraints of the community networks. For
example, an initiative in this regard has been the Cloudy distribution [Clo16], which is based
on Linux operating system and incorporates useful free and open-source services of interest to
the members of Guifi.net [Sel+15]. Of course, this does not imply that the community cloud
model is restricted only to the members of the community networks. In fact, with Cloudy
distribution there has been an effort to engage and involve others who are not part of a com-
munity network, and let them connect using network tunnelling protocols [Com16a]. The
emphasis is on building cloud services and applications of local interest using the resources
contributed by themembers of the community networks, but also on engaging thewider Inter-
net community at the same time, which can also generate interest in the community networks
themselves.

The resources available in the community network clouds can be divided into various cat-
egories. Network resources, like upstream and downstreambandwidth at different links of the
community network, available bandwidth at the Internet gateways, or bandwidth at the links
connecting to the popular content servers, are limited and already of value to the members of
the community networks. Any community cloud solution has to work within the constraints
of the available network capacity, and avoid negatively impacting the operations of the com-
munity network. Community clouds at the basic level provide Infrastructure-as-a-service
(IaaS), where resources like computation, memory and storage, are packaged as virtual ma-
chine (VM) instances. In the collaborativemodel of community network clouds, users will be
trading these resources as VMs among themselves. Other resources can include multimedia
content, data storage, and other services, that are of interest to the users.

The underlying principles for regulating resources, in general, apply equally to all these dif-
ferent kinds of resources. In practice, the proposed solutions are often customised to better fit
a particular problem scenario. In our work, we have focused on two scenarios, which provide
broad coverage of resource regulation problem in the community network clouds, and our
prototypes addressing the two scenarios bring completeness to the solution for managing in-
centives in community network clouds.

In Chapter 4, we focus on managing computing resources as VMs among the users. We
propose efficient regulation mechanisms in the context of a small community of users, per-
haps part of a single zone of the community network, which already has trust and strong social

25

relationships among its members. Our mechanisms regulate usage of the shared resource of
available VMs, and succeed in incentivising contribution from the users. This is important in
the community cloud model, since without active and continued contribution by the users,
the model cannot be sustainable and scalable.

In Chapter 5, we broaden our scope to the overall community network where users par-
ticipating in the community cloud may be from different zones, and have no prior relation-
ships or established trust among them. We focus specifically on the bandwidth available at
the Internet gateways in the community network for two main reasons. Firstly, the available
bandwidth to Internet is limited and already in high demand by the users of the community
networks, and secondly, the community cloud services will also require access to Internet of-
ten with service-level guarantees for the bandwidth resource. We propose a framework for
distributed auctioneer that arbitrates users’ access to the bandwidth available from the differ-
ent getaway providers in a fair manner, even in the absence of trust among the users. Even
though in Chapter 5 we develop and evaluate the distributed auctioneer for bandwidth alloca-
tion, the proposed framework can be generalised and also directly applied to allocating VMs
at a cloud service provider. We can also extend this framework for the scenario of trading
VMs from Chapter 4, which we leave for the future work.

3.4 Summary

The idea of community network clouds follows on from volunteer computing paradigm. We
looked at the general ideas of community clouds, both in commercial and non-commercial
context, and focused on the realisation of citizen community clouds within the community
networks. Community network clouds are as much a social construct as a technical one, and
so require careful design of resource regulation and allocation mechanisms, in order to en-
courage participation by the members of the community networks.

Notes

The background studies presented in this chapter (§ 3.1) were accomplished in cooperation
with my advisors Felix Freitag and Luís Rodrigues. We are also thankful for the cooperation
of Roger Baig and Roger Pueyo Centelles from Guifi.net, and Leandro Navarro from Uni-
versitat Politècnica de Catalunya (UPC), who provided valuable insights into the operation
of Guifi.net community network. The studies were published as a book chapter “Community
Clouds” [KFN16], in Encyclopedia of Cloud Computing (2016), published by Wiley & IEEE

26

(ISBN: 978-1-118-82197-8), and as a short paper “Current Trends and Future Directions in
Community Edge Clouds” [KFR15], in 4th International Conference on Cloud Networking
(CloudNet 2015), Niagara Falls, Canada, October 2015.

The work on the proposal for distributed architecture presented in this chapter (§ 3.2) was
accomplished in cooperation with my advisor Felix Freitag. We also collaborated with Men-
nan Selimi and Emmanouil Dimogerontakis, other PhD students at UPC and IST, who did
provide relevant contributions for the evaluation of cloud services in community networks.
The proposal was published as a full paper “Towards Distributed Architecture for Collaborative
Cloud Services in Community Networks” [KSF14], in 6th International Conference on Intelli-
gent Networking and Collaborative Systems (INCoS 2014), Salerno, Italy, September 2014. It
was later integrated into an extended journal article “Cloud services in the Guifi.net community
network” [Sel+15], in Computer Networks 93.P2 (Dec. 2015).

27

4
Managing Incentives with Trusted Users

Community networks are an ecosystem which is able to regulate and maintain itself, some of
the community networks are there for even more than a decade. We argue that community
cloud, a cloud infrastructure formed by community-owned computing and communication
resources, has many technical and social challenges so that the main drivers of today’s con-
tribution to community networks, volunteer and altruistic behaviour, are not enough to suc-
cessfully overcome these barriers. Our hypothesis is that for community cloud to happen, the
members’ technical and human contribution needed for such a cloud, needs to be steered by
incentivemechanisms that pay back the users’ contributionwith a better quality of experience
for them.

In this chapter, we study an incentivemechanism for clouds in community networks, keep-
ing in view the key characteristics of community networks and the scenarios we foresee for
community clouds. This incentivemechanism is inspired by Parecon economicmodel [Alb04;
Rah+10; Veg+13], and is based on the idea of effort of each participant, whichwe define as her
contribution relative to her capacity. Our approach is to do the evaluation with simulation
experiments and a prototype, which allows us to derive additional conclusions regarding its
feasibility for implementation and deployment on a wider scale.

29

4.1 Motivations

Community networks are based on the principle of reciprocal sharing, which is formalised
by the agreements users accept when they join the network. The Wireless Commons Li-
cense [Wir10] or Pico PeeringAgreement [Pic05] is adopted bymany community networks to
regulate network sharing. The underlying principle is that users allow all the traffic to transit
over the links that they own, and this is in return for the access they enjoy to the community
network. The agreements are enforced, in most cases, through the social context. For ex-
ample, members of Guifi.net have mailing lists and many regularly hold meetings where any
complaints and issues are also addressed [Bai+15b]. In the worst situation, users may be ex-
cluded from using the services, if their behaviour continues to be damaging to the operation
of the community network.

Community networks in most cases tend to avoid having sophisticated mechanisms in
place like auditing, billing, or other advanced pricing or auction-basedmechanism, since they
find it not in linewith the sharing and open spirit of the community networks. Moreover, such
mechanisms introduce additional overheads to the operation of the network, and in many
cases may be difficult for users to understand and may discourage participation. When prob-
lems do occur, these are often addressed in ad-hoc manner and at the local level, for example,
the network administrator may shut down some of the links. For persistent problems, the
community often chooses to increase the capacity by buyingmore equipment and adding new
links. For instance, in Guifi.net, some nodes have been successfully crowd-funded [Bai+15b]
if such a node was needed by several people. Crowd-funding of a node happened when for a
group of people an infrastructure improvement was necessary. For example, an isolated zone
of Guifi.net established a super node to connect to other zones.

We think that such a situation may not be sufficient for sustaining a community cloud eco-
system. This is because the contribution required from the users of community cloud, both
in terms of the equipment, capital investment, and maintenance costs, and their effort, know-
ledge, and time, is orders of magnitude larger than what is needed to keep the community
networks running. In the absence of any resource regulation mechanism, users will lack in-
centives to contribute resources. When all the computing and storage are made available at
no cost to the community, it would be difficult to find many users willing to contribute solely
for altruistic reasons, and even when the resources aremade available, they will get consumed
quickly by the free-riding users. Therefore, we propose that incentives based resource regula-
tion has to play a key part in the sustainability of a community cloud ecosystem.

30

4.2 SystemModel

4.2.1 Nodes in Community Network

We consider a community network, which is managed and owned by the community, and
the nodes are managed independently by their owners. The nodes in a community network
vary widely in their capacity, function and capability, so we generally divide the nodes into
two categories: super nodes (SNs), and client or ordinary nodes (ONs). SNs have multiple
wireless links and connect with other SNs to form the backbone of the community network,
and are usually intended to be stable with permanent connectivity. Most SNs are installed in
the community network participant’s premises. A few SNs, however are placed strategically
in a third party location, e.g. telecommunication installations of municipalities, to improve
the community network’s backbone. ONs, on the other hand, are only connected to the access
point of a SN. Topological analysis of approximately 17,000 nodes of the Guifi.net community
network indicates that around 7% are SNs while the others are ONs [Veg+12].

Principally the hardware for computation and storage is already available in community
networks, consisting of some servers attached to the networking nodes. No cloud services,
however, are yet deployed in community networks to use this hardware as a cloud, leaving the
community network services significantly behind the current standard of the Internet. Our
vision is that some community wireless routers will have cloud resources attached, building
the infrastructure for a community cloud formed by several cloud resources attached to the
nodes. We note that ONs could principally also contribute cloud resources.

On the management side, community networks like Guifi.net, are organised into zones. A
zone can be a village, a small city, a region, or a district of a larger city. The organisation of the
group within a zone is of many types. Mostly the interests, available time and education of
the people drive what happens in the zone. We note that while the allocation of IP addresses
and layer 3 networking is agreed among all Guifi.net zones, as it is needed to make the IP
networkwork, the detailed technical support is rather givenwithin the local community of the
zone. Therefore, we identify a zone to have the highest social strength within the community
network.

4.2.2 Community Cloud Scenarios

These observed characteristics of the community networks lead to two cloud scenarios in our
model, local and federated community clouds. The SNs and ONs provide the networking

31

Local Communi ty Cloud

Super Node (SN)

Ordinary Node (ON)

Figure 4.1: Nodes in federated community cloud

infrastructure, which in order to realise the community cloud, need to be attached to other
hardware like servers and storage. The cloud management software will run on these servers
attached to the networking nodes, SNs and ONs. In the following, when we refer to these
nodes, SNs or ONs, we presume them to be those networking nodes of the community net-
works that already have other computing hardware attached.

First, we have the “local community cloud” scenario, which is derived from the topology of
the community network, given by the fact that the community network generally has two dif-
ferent types of nodes, SNs and ONs, and the observed characteristics of the strength of social
network within zones [Veg+12]. In such a local community cloud, a SN is responsible for the
management of a set of attached nodes contributing cloud resources. From the perspective
of the attached nodes, this SN acts as a centralised unit to manage the cloud services.

Next, we consider the scenario when multiple SNs from different zones in a community
network connect to form a “federated community cloud”. SNs connect physically with other
SNs through wireless links and logically in an overlay network to other SNs that manage local
clouds. SNs coordinate among themselves for provisioning infrastructure service so the re-
quests originating from one SN’s zone can be satisfied by the resources allocated from another
SN’s zone. Figure 4.1 shows an example of a federated community cloud formed by SNs from
three zones. The ONs in a given zone are directly managed by the SN in that zone but they
can also consume resources from other zones because of the coordination among SNs.

32

4.2.3 Resource Provisioning and Coordination

With these two cloud scenarios, we assume that requests for the resources are generated by
the users at the ONs. Users, who want to contribute resources also make them available at
ONs. All the requests are submitted directly to the single SN managing that particular ON.
SN keeps track of all the ONs, the available resources, and the requests from the users. SN
services the requests depending on the availability of the resources, and whether the user
has sufficient credit to pay for these resources. When a user consumes resources at another
ON, the connection is set up through the SN, and all the interactions remain within the local
community cloud. When SN decides to federate resources with other zones of community
clouds, all the interactions are through the SNs of both the zones.

4.3 Effort-Based Incentive Mechanism

To ensure sustainability and growth of the community cloud, incentive mechanisms are
needed that encourage members to contribute with their hardware, effort and time. When
designing such mechanisms, the heterogeneity of the nodes and communication links has
to be considered since each member brings in a widely varying set of resources and physical
capacity to the system. Most peer-to-peer (P2P) systems implement incentive mechanisms
based on contribution, where nodes are rewarded according to resources they donate to the
system [She+10]. We suggest an effort-based incentive mechanism for community cloud,
where effort is defined as contribution relative to the capacity of a node [KBF15]. This
mechanism is inspired by the Parecon economic model [Alb04; Rah+10; Veg+13], which
focuses on social welfare by considering inequality among nodes. Nodes with different
capacity cannot have same contribution to the system, but with effort-based mechanism they
get same reward if they share as much as possible of their capacity, as we explain in § 4.3.1.
We can use a system of credits, acting as virtual currency, to facilitate transactions between
providers and consumers. When resources are consumed, providers earn credits which they
can later use to request resources from the system. We assume, because of the trust among
the community, that users truthfully report the capacities of their nodes.

4.3.1 Formulations

We first discuss the criteria that a SN uses to evaluate requests from ONs. When a node
asks for a resource from a SN, which in this case means to commit an instance of VM for

33

a given duration, the SN first checks whether the ON’s credit is sufficient to cover the cost
of the transaction. The cost given in eq. (4.1) is proportional to the number of resources
requested 𝑅𝑖 and the duration 𝑇𝑖 for how long they are required. The nonzero coefficients 𝛾
and 𝜌 apply to the amount and duration of resources shared respectively, and provide a way to
tweak the value generated by the transactions, which is useful to control the behaviour when
implementing the prototype system.

transaction_cost = 𝛾𝑅𝑖 × 𝜌𝑇𝑖 (4.1)

The cost from all the past transactions node 𝑖 participates in, either as a provider or a
consumer, determines the level of its credit. SN keeps track of the history of all the past
transactions, and the credit of each node. If the requesting node does not have enough credit,
the request is rejected. Otherwise, the SN searches for nodes that have resources available. It
selects as many nodes as possible from its local zone to provide the resources. If the demand
cannot be met locally, the SN forwards the request to other SNs in the federated community
cloud.

Nowwe consider how the SNmanages the credits of the nodes that take part in the transac-
tion. For each node which contributes its resources to fulfil the request, the SN calculates the
transaction cost from eq. (4.1), and adds it to that node’s credits. The cost is deducted from
the credits of the node that consumed the resources. After the transaction is completed, the
effort for each node involved in the transaction is recalculated using eq. (4.2). Here 𝑐𝑟𝑒𝑑𝑖𝑡𝑖
represents the total credit of the node 𝑖, taking into account the outcome of the most recent
transaction. The nonzero coefficient 𝜖 applies to the capacity of the node, and acts as a norm-
alising factor taking into account the overall capacity in the system. A selfish node not con-
tributing enough has effort 𝐸𝑖 < 1, and will be at a disadvantage when requesting resources,
as in eq. (4.4).

𝐸𝑖 =
⎧{
⎨{⎩

credit𝑖
𝜖𝐶𝑖

𝑖𝑓 credit𝑖
𝜖𝐶𝑖

< 1

1 otherwise
(4.2)

The effort 𝐸𝑖 of a node expresses its relative contribution to the system, since the mech-
anism considers the capacity 𝐶𝑖 of a node as well. This means that a node with low capacity
puts in more effort than a node with high capacity even if both of them donate same amount
of resources to the system. For total 𝑁 nodes in the system, the total amount of available
resources 𝛺 is the sum of the resources 𝜔𝑖 contributed by each node 𝑖 ∈ 𝑁 (out of its total

34

capacity 𝐶𝑖).

𝛺 = ∑
𝑖∈𝑁

𝜔𝑖 (4.3)

The maximum resources node 𝑖 can consume, 𝛥𝑅𝑖, depends upon its effort 𝐸𝑖. A node
actively contributing to the system has 𝐸𝑖 = 1, and so can access all the available resources
(𝛺 − 𝜔𝑖), but a selfish node with 𝐸𝑖 < 1 gets penalised with limited access to the resources.

𝛥𝑅𝑖 = 𝐸𝑖 × (𝛺 − 𝜔𝑖) (4.4)

The effort-based mechanism implies that the nodes with better resources may find it bene-
ficial to under-report their capacity in some cases. This requires that the mechanism should
be carefully designed so as not to penalise high capacity nodes too much. Moreover, within a
community of trusted users, we assume that the social context encourage users to be truthful
when reporting the capacity to SN, and that the community may employ other mechanisms
to verify the capacity of the nodes.

4.3.2 Algorithm for Requests Processing

Algorithm 4.1 explains how a SN handles request from a node in its zone. When SN receives a
request, it first calculates that node’s allowance 𝛥𝑅𝑖 to confirm whether it has enough credit
to fulfil the request. If not, the request is rejected, otherwise the algorithm calls decision
functionwhich searches for available resources (lines 1–5). Thedecision functionfirst checks
if enough resources are available in the local zone (line 8), and selects the nodes that will
provide the resources from its local zone (line 9). If SN cannot satisfy request from its local
nodes, it forwards request to one of its neighbouring SNs (lines 16–18). After the provider
nodes commit resources, SN calculates cost of the transaction and updates the nodes’ credits,
deducting credits from the requester and increasing credits of the providers (lines 10–14). The
sequence of steps is depicted in Figure 4.2.

If the request from an ON is rejected, ON can submit the request again to SN after some
time. In the current implementation, resources are assigned to whoever first requests them
as they become available. So this may not be fair in the sense that the time users have been
waiting for the resources is not taken into account. This issue can be addressed by using
queuing at the SN to keep track of the pending requests. Similarly, a related issue occurs when
theremay bemultipleONs that the SN can pick as providers for a given request. Therefore, SN

35

Figure 4.2: Details of the VM request operation by ON

may have to apply a selection mechanism for prioritising which ONs to choose as providers.
We have studied the effect of some selectionmechanisms on the performance in [KBF13], and
we leave further investigation of these issues for future work.

4.4 Performance Evaluation

In order to assess the suitability of the proposed effort-based mechanism to community net-
work clouds, we need to study how it impacts the efficiency of the system, and how fair it is
to the users with different resource capacities. As compared to contribution-based mechan-
isms, which reward the users in terms of the total resources they contribute to the system,
effort-based incentives may put high contributors at slight disadvantage, when they reward
the users with low capacities. So effort-based mechanisms need careful design in order to
maintain high system utilisation, and at the same time ensuring fairness for the users with
different level of contributions.

In the following, we evaluate the mechanisms first through simulation experiments
(§ 4.4.1), and then through a prototype deployed in a testbed with real community network
nodes (§ 4.4.2). Our results show that effort-based mechanisms apply well to the context of

36

Algorithm 4.1Handling requests from ONs
Input: receive query from node i with the requested amount 𝑅𝑖 and the time 𝑇𝑖
1: calculate (𝛥𝑅𝑖)
2: if 𝑅𝑖 <= 𝛥𝑅𝑖 then
3: call Decision (i, 𝑅𝑖, 𝑇𝑖)
4: else
5: send (“rejected”, i)
6: end if
7: procedure Decision (𝑖, 𝑅𝑖, 𝑇𝑖)
8: if 𝑅𝑖 <= 𝛺 then
9: ProvidersList[n] ← provider (ON_List, 𝑅𝑖)

10: for each j in ProviderList[n] do
11: Cost Of Transaction𝑗→𝑖 ← 𝑅𝑟

𝑗 ∗ 𝑇 𝑡
𝑗

12: update_credits (Cost Of Transaction𝑗→𝑖)
13: update_database (ON_List)
14: end for
15: else
16: SN ← provider (SN_List, 𝑅𝑖)
17: forward (SN, i, 𝑅𝑖, 𝑇𝑖)
18: end if
19: end procedure

community network clouds.

4.4.1 Evaluation with Simulation Experiments

We evaluate the impact of the effort-based incentive mechanism through simulation experi-
ments that cover resource regulation on a larger scale across multiple SN zones covering both
local and federated community cloud scenarios.

Experiment Setup

We simulate a community network comprising of 1000 nodes which is divided into 100 zones
and each zone has one SN and nine ONs. The zones are distributed in a small world topology
where each zone is neighbour to 10 other zones. This approximation holds well for real world
community networks as, for example, topology analysis of Guifi.net [Veg+12] shows that the
ratio of super node to ordinary nodes is approximately 1 to 10. Each ordinary node in the sim-

37

Table 4.1: Configuration for each node in a zone with shared and total instances

Node Behaviour Shared Small capacity Medium capacity Large capacity
Selfish 33% ON1 (1/3) ON2 (2/6) ON3 (3/9)
Normal 66% ON4 (2/3) ON5 (4/6) ON6 (6/9)
Altruistic 100% ON7 (3/3) ON8 (6/6) ON9 (9/9)

ulation can host a number of VM instances that allows users’ applications to run in isolation.
Nodes in the zone have two main attributes, one is capacity which is the number of available
VM instances, and other is sharing behaviour which is how many instances are shared with
other nodes. Table 4.1 shows the different configurations for each of the nine ONs in each
zone. Nodes with low, medium and high capacity host 3, 6 and 9 VM instances respectively
and they exhibit selfish, normal or altruistic behaviour sharing one-third, two-thirds or all
of their VM instances. For example, node ON2 has medium capacity with 6 instances and
exhibits selfish behaviour reserving 4 instances for itself and contributing only 2 to the system.

When the experiment runs, the nodes are given initial credit in proportion to their capacity.
Nodes make requests for resources proportional to their capacity asking for two-thirds of
their capacity. For instance nodes with capacity of 3, 6 and 9 VM instances request 2, 4 and
6 instances respectively. Nodes request instances for fixed duration and after transaction is
complete wait briefly before making further requests. We have implemented the simulator in
Python.

Ratio of Successful Requests

Table 4.2 shows the success ratio for requests made by different nodes analysed both with the
effort-based and contribution-based incentive mechanisms. We first notice that the success
ratio values decrease as the capacity of the nodes increases. This is explained by the fact that
nodes with greater capacity request more instances, and so have a higher chance of getting
rejected either because there are not many resources available in the system or because the
requesting nodes do not have sufficient credit. However, when comparing the success ratio for
nodes as their capacity increases, we observe that there is not a great variation. For instance,
for the normal sharing behaviour the values range from 66% to 97% for contribution-based
incentives, but from 86% to 90% for effort-based incentives. This is explained by the fact that
contribution-based approach does not take heterogeneity of nodes into account, and penalises

38

Table 4.2: Success ratio for nodes with different configurations (effort vs contribution)

Node Behaviour Incentives Small capacity Medium capacity Large capacity

Selfish
effort-based 54% 53% 50%

contribution-based 66% 59% 39%

Normal
effort-based 90% 91% 86%

contribution-based 97% 77% 66%

Altruistic
effort-based 97% 94% 86%

contribution-based 97% 85% 65%

nodes with low capacity as they cannot contribute as much to the system as others. These
results indicate that effort-based incentives ensure fairness in the system, since the nodes with
the same sharing behaviour are treated equally irrespective of their capacity.

Breakdown of Request Responses

Figure 4.3 shows the overall breakdown of successful and rejected requests across all the zones,
where there aremanymore successful requests than rejected ones. The success ratio is slightly
better for effort-based incentives. Moreover, contribution-basedmechanismhas greater share
of requests rejected because of lack of credit, while very few requests are rejected because
of a lack of resources. This indicates that the effort-based incentive mechanism improves
efficiency as more resources are utilised. In addition to this observation, the majority of the
requests are fulfilled using resources from the local zone with very few requests forwarded to
other zones.

Resource Utilisation

Figure 4.4 shows the proportion of resources utilised in the system along the execution of a
24 minutes experiment for effort and contribution based approaches. In the beginning, all
nodes have enough credit and the resource utilisation is high. Then it drops to below 60%
at around the 12th minute, and keeps fluctuating for a while. Afterwards, since most of the
nodes have completed their transactions and consumed their credits, the utilisation decreases
significantly. The effort-based approach though achieves a higher resource utilisation during
that time.

39

Figure 4.3: Breakdown of outcome of requests with effort and contribution based mechanisms

The results also point to a possible load imbalance issue since as the experiment progresses
the large capacity nodesmay accumulate the credit, lowering the percentage of used resources
over time. Many nodes are left with insufficient credit to consume resources. One approach
to overcome this issue is to supply all the nodes with a limited fixed amount of credit at regular
intervals, which will keep the resource utilisation high.

4.4.2 Evaluation with Prototype

Prototype Implementation

We have implemented a prototype of the incentive-based regulation mechanism [KBF14] in
Python using CouchDB [ALS10] database at the back-end, and deployed it in Community-
Lab testbed [Com16b]. We chose Python because the current host operating system installed
on ONs in the testbed is OpenWRT [Ope16c], which supports Python, but does not support
many other languages such as Java. We selected CouchDB because among its advantages, it is
lock-free, schema-less and provides a REST interface, and is also part of the other components
of the SN’s cloudmanagement software being developed. In the SNs, Debian operating system
is installed.

Figure 4.5 shows the implemented components of the cloud coordinator from the archi-
tecture in § 3.2. The components from the prototype are described below.

40

Figure 4.4: Resource utilisation

ONManagement ONs can register with SN to request and to contribute resources.

Regulation Mechanism When pooling resources from multiple zones, the cloud coordin-
ator applies a regulation mechanism that takes into account resource utilisation and contri-
bution by different nodes to perform resource allocation.

SN Interconnectivity The design of a community cloud manager follows a decentralised ap-
proach, so cloud coordinator relies on gossip-based discoverymechanisms tomanage overlay
network of the SNs in community cloud. The updated list of adjacent SNs is saved in SN-List
database.

SN Resource Sharing When requests from ONs cannot be met from resources in the local
zone, SN can request resources from other SNs in the system.

ONs use the remote procedure call (RPC) mechanism to connect to the SN. First of all, an
ON assigns itself to a parent SN with a register message which includes metadata of that ON
such as IP address, total capacity and number of VMs shared. In the current prototype, the
IP address of SN is fixed and is manually provided when setting up ONs. However in future,
service discovery tools like Serf [Ser16] can be used to get address of SN. This registration

41

Figure 4.5: Components of cloud coordinator

information is stored in the ON-List database of the parent SN by creating an entry for the
corresponding ON. After that, the ON is ready to send requests to its parent SN, which are
processed using Algorithm 4.1 as shown in Figure 4.2. When an ON requests its parent SN
for any VMs, it specifies the duration for how long it needs to use the VMs. This request
is evaluated by performing incentive and decision mechanisms as explained in section 4.3.
If a request cannot be met locally, the corresponding parent SN checks its SN-List database
to find another zone with available resources. The interactions between SNs are also made
through RPC mechanism. In the SN controller software, there is a separate process which
regularly checks the database for any updates. If the duration of a consumer ON’s resource
request has expired, it frees the VMs and makes them available for the provider ON, and
updates the metadata entries of the corresponding ONs in the ON-List database. The current
implementation keeps track of the number of VMs contributed and consumed by each ON.
The system copes with ONs connecting and disconnecting from the SN at any time since
ONs periodically send heartbeat messages to the SN. The design allows us to include values
of metrics like CPU, memory, and bandwidth usage in the future for fine-grained decisions
about resources assignment.

Experiment Setup

We deploy the prototype of the regulation component of the cloud coordinator from com-
munity cloud management system in the Community-Lab testbed, which is developed by the

42

CONFINE European project [Bra+13]. The cloud coordinator components are installed on
nodes of the Community-Lab testbed, which consist of Jetway JBC372F36W devices, and are
equipped with an Intel Atom N2600 CPU, 4GB of RAM and 120GB SSD. Depending on the
experiment, one or two nodes operate as SNs, while each ON hosts between one and four VM
instances. Note, however, that since OpenWRT has limited supported for either containers-
based or full virtualization, in these experiments the nodes submit and process the requests
but VMs are not actually created on the ONs. The objectives of the experiments are twofold:

1. Experiment 1: Assess the prototype operation regarding the incentive-based resource
assignment algorithm in a local community cloud scenario.

2. Experiment 2: Study the coordination between SNs from different zones in the feder-
ated community cloud scenario with heterogeneous resource distribution.

Resource Assignment in Local Community Cloud Scenario

In order to study the performance of the prototype in a real deployment of a local community
cloud, we install our software components in four ONs and one SN in Community-Lab test-
bed, which are connected to the Guifi.net community network. Each node behaves as an ON
but with different configuration, in order to have a heterogeneous set of cloud resources. The
four nodes include f101 sharing 1 out of total 2 VMs, f102 sharing 3 out of total 3 VMs, f103
sharing 1 out of total 3 VMs, and f104 sharing 1 out of total 1 VM. Each ON sends request
for VM instances to the SN at regular intervals. VMs are requested for 20 seconds interval at
a time. Each ON requests as many VMs as its total capacity, for example node f101 always
requests 2 VMs. If the request is accepted by the SN, the ON obtains the VMs for the next 20
seconds. If the request is rejected, the ON waits for 5 seconds before making any further re-
quests. The experiment is run with this setup for around 5 minutes. We analyse the different
aspects of the system behaviour in the following.

Resource Utilisation

Figure 4.6 shows the level of resource utilisation in the system in terms of the number of re-
served VMs versus the total number of VMs. It can be seen that resource utilisation varies
widely and 100% utilisation, meaning all the VMs being occupied, occurs only for short inter-
vals. This is because as nodes obtain VMs they spend their credit, and if they are not able to
earn credit by contributing VMs, their credit gets below a certain threshold, and they can no

43

Figure 4.6: Overall resource utilisation of the four ONs

longer request more VMs. At approximately 80th second, the utilisation gets very low. Nodes
then need to earn credit by providing VMs to others before they can request VMs again. So
even though VMs are available, they cannot be utilised due to the lack of credit in the system.

Credit Distribution

Figure 4.7 shows the credit distribution among the four ONs during the 5 minutes of the
experiment. A node’s credit is affected by how many VMs it shares and how much credit it
spends to obtain VMs. When a node shares most of its capacity, like ON f102 providing all its
3 VMs, it earns more credit and so maintains a high credit level during the experiment. On
the other hand, when a node continuously consumes VMs like ON f101 and f104, it keeps
on spending any credit that it earns, so its credit does not increase beyond a certain level. Of
particular interest is the behaviour of ON f103, which earns credit in the start and gets a spike
in credit level halfway through the experiment, but then quickly spends it as it requests VMs
from others.

Note that an ON’s credit can be negative or higher than 100% of the total credit because
in the current implementation SN can allow requests from ONs with zero or or less than
zero credit up to some extent. The ONs with zero or negative credit can, of course, continue
to provide VMs and earn credit, they can only not request VMs if their credit is negative
and below a certain threshold. This allows the nodes without any credit an opportunity to

44

Figure 4.7: Distribution of credit among the four ONs

continue participating in the system and increase their credit by contributing resources.

Success Ratio

Figure 4.8 shows the ratio of the fulfilled requests for each node, which is affected by the level
of credit of the node and the amount of resources available in the system. ON f104 has the
most success since it requests only one VM at a time while ON f103 has the least success since
it requests 3 VMs, which is half of the total shared VMs in the system. ON f101, on the other
hand, gets its requests rejected because of the lack of credit. Therefore, this node has to wait
to gain the needed credit.

Resource Assignment in Federated Community Cloud Scenario

In this experiment, we set up two local clouds, each with one SN and four ONs to study the
federated community cloud scenario, as illustrated in Figure 4.1. Table 4.3 shows the two
cases with different number of VMs available in the two zones. In the case of scarce capacity
(case 1), the nodes in the SN1 zone share very few VMs compared to nodes in SN2 zone. In
the case of equal capacity (case 2), the nodes in both the zones share the same number of
VMs.

45

Figure 4.8: Ratio of fulfilled and rejected requests

Figure 4.9 shows the proportion of the requests fulfilled byVMsprovided by the other zone.
With scarce capacity in SN1 zone, around 50% of the requests are fulfilled byVMs provided by
SN2 zone. SN2 with sufficient capacity is able to meet most of the requests from VMs within
the same zone, forwarding less than 15% requests to the other zone. In the second case, when
both zones have the same available capacity, most of the requests get processed within the
same zone for both the SNs. This shows that a federated community cloud scenario extends
the resources assigned to zones with limited capacity.

4.4.3 Discussion

From the simulation experiments (§ 4.4.1) we find that the effort-based resource regulation
succeed in not only ensuring high system utilisation, but they also ensure fairness when re-
warding users for their contributions. Following on from the insights through the simulation
experiments, we implemented a prototype and from the results through its deployment in
Guifi.net community network (§ 4.4.2), we observe that:

1. The prototype of the regulation service deployed in real community network nodes
performed the required operations. Its components worked correctly both in the ON’s
host operating system (OpenWRT) and the SN’s operating system (Debian). We could
not observe the limitations of our implementation within scales that are realistic for

46

Table 4.3: Two cases with different resource distribution between zones

Case 1: Scarce Capacity Case 2: Equal Capacity
SNs ONs Total VMs Shared VMs Total VMs Shared VMs

SN1

ON1 3 1 3 2
ON2 3 1 3 3
ON3 3 1 3 2
ON4 1 1 1 1

SN2

ON1 3 2 3 2
ON2 3 3 3 3
ON3 3 2 3 2
ON4 1 1 1 1

community networks. We note however that as a continuation of this work, a more
extensive deployment of several federated community clouds with real users and real
usage should ultimately be undertaken.

2. The algorithm used for the regulated resource allocation controlled the VM assign-
ments, taking into account the user’s contribution and usage. More complex situations,
however, should be created in further studies to provide additional insight into how
the system behaves.

3. Our experiments were carried out on limited number of nodes and for limited time. If
our prototype was deployed on additional nodes that are geographically widely spread
and run for extended periods, the VM assignment decisions might need to take into
account information from network awareness to select the appropriate cloud resource
providers.

4.5 Summary

We focused in this chapter on the need for an incentive-driven regulation mechanism, and
identified it as a key component to encourage contribution towards and foster adoption of
community clouds. We investigated incentive mechanisms for community clouds based on
reciprocal resource sharing, and the results highlight their impact on the efficiency of the
system and on regulating the resource assignments. The regulation component is implemen-
ted in a simulator in order to be able to perform assessments for large scale scenarios. With

47

Figure 4.9: Resources assigned from different SN zones

simulation experiments we characterised the behaviour of different settings of the incentive
mechanism, and evaluated the success ratio of requests by the nodes and the resource utilisa-
tion. We implemented a prototype and deployed it in Guifi.net to study the performance of
the proposed mechanism under the real world constraints. We find that effort-based incent-
ive schemes perform well in maintaining a community cloud ecosystem, through ensuring
continued contribution by the users. The understanding gained from these results helps in
the design of the policies that such incentive mechanism could follow in a future platform of
real community cloud system.

Notes

The results presented in this chapter were accomplished in cooperation with my advisor Fe-
lix Freitag and Ümit C. Büyükşahin, a Masters student at UPC [Buy13]. Ümit did provide
relevant contributions to the implementation of the simulator, and the prototype.

The results were published as full papers “Towards Incentive-based Resource Assignment
and Regulation in Clouds for Community Networks” [KBF13], in 10th International Confer-
ence on Economics of Grids, Clouds, Systems, and Services (GECON 2013), Zaragoza, Spain,
September 2013, and “Prototyping Incentive-Based Resource Assignment for Clouds in Com-
munity Networks” [KBF14], in 28th IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA 2014), Victoria, Canada, May 2014. An extended
version of the work was then published in the article “Incentive-based Resource Assignment

48

and Regulation for Collaborative Cloud Services in Community Networks” [KBF15], in Journal
of Computer and System Sciences 81.8 (Dec. 2015).

49

5
Managing Incentives with Untrusted Users

When cloud applications are deployed within community networks, in many cases connectiv-
ity external to the community network is important. Even when cloud applications are de-
ployed using resources solely available within community networks, they require connection
to the Internet for functioning. In the basic case, cloud applications may want to backup or
synchronise data with servers external to the community network, or require fetching data for
operating the service, for instance a video-on-demand service may download fresh content.
Also, a service available in multiple community networks requires access at the gateways for
exchanging data, and gateways in this case act to federate the community networks. Applic-
ations for Internet of Things and smart cities involve collecting data from the sensors, which
may have to be shared with servers outside the community network for data analysis. For
the case of edge clouds, the servers residing within the community networks, acting as nano
data centres, require connectivity to the data centres. In all these situations, the applications
deployed on servers within the community network require bandwidth at the gateways with
quality-of-service (QoS) guarantees to connect to the Internet, though their requirements for
robustness, waiting time, throughput, and prioritising network traffic, may vary for different
scenarios. Figure 5.1 shows how such an edge cloud can be deployed within a community
network. The servers are present at different locations, either caching content for media-rich
applications or performing computation locally for time-critical applications. These servers

51

Internet
Provider

Cloud
Servers

Data Cent res

Communi ty
Network

Users

Figure 5.1: Users connected to the service provider’s gateway in a community network

require connection to the data centres through the Internet, for which they rely on the gateway
providers available in the community network [Bai+15b].

Community networks, as any other human organisation, are not immune to overuse, free
riding, or under-provisioning, specially in scenarios where users may have motivations to
compete for scarce resources. In this chapter, we consider the concrete problem of band-
width reservation on the gateways that connect the community network to the Internet. In
particular, we consider that, as in most community networks, the subset of users that offer
gateway services to the Internet is smaller than the complete set of users. Users that are not at
the gateways may be interested in reserving bandwidth in these gateways for Internet access.
If the available bandwidth at each gateway is not enough to satisfy the demand, one needs
to implement some arbitration mechanism that optimally and fairly allocate resources, Note
that we are not considering the bandwidth on the links internal to the community network,
because network is operated in a shared manner, and this bandwidth is collectively owned by

52

the community.
Most of the auction-based game theoretical approaches in literature, as we discussed in

§ 2.3, assume that the auctioneer is trusted. This is an unreasonable assumption in com-
munity networks, where no entity can be trusted, and even if such entity existed, it would
be a bottleneck. Thus, there is a substantial gap that needs to be bridged to apply these results
in community networks. In this chapter, our aim is to address this gap by by proposing a
framework of distributed protocols that allows multiple resource providers in a community
network to simulate the role of the auctioneer. Such simulation raises significant challenges
both from the theoretical and practical points of view. From the theoretical perspective, al-
though there is a vast literature of distributed fault-tolerant algorithms, with very few excep-
tions (for instance, [ADH13]), these works do not consider rational behaviour. From the
practical perspective, the distribution of the auctioneer may incur additional overhead. Our
proposal addresses both concerns. First, we prove that our distributed simulations are sound
from a game theoretical perspective. Specifically, we show that the simulations are 𝑘-resilient
(ex post) equilibria [ADH13], i.e., Nash equilibria resilient to asynchrony and coalitions of
providers of size at most 𝑘. Second, our protocols leverage the distributed nature of the res-
ulting virtual trusted entity to parallelise the resource provisioning algorithm, compensating
for the additional costs imposed by coordination. We have implemented a prototype of our
protocols and evaluated the resulting system in a real community network.

Even though in our example we only focus on bandwidth reservation, the fundamental
problems at hand are general and emerge every time shared resources need to be allocated to
users in a set of providers, such as for allocation of processing andmemory resources as virtual
machines in public clouds [Zha+15b], assignment of frequencies in secondary wireless spec-
trum markets [Zho+08], and resource scheduling in grid and cloud infrastructures[Lai+04].

In summary, our main contributions in this chapter are the following:

• We propose a framework for devising distributed protocols executed among service
providers that correctly simulate the auctioneer in a family of resource allocation auc-
tions.

• We show that every implementation of the framework is a 𝑘-resilient (ex post) equilib-
rium. These implementations also tolerate users that send invalid bids.

• We show that it is possible to leverage the distributed nature of our framework to par-
allelise implementations, mitigating scalability issues of purely centralised solutions.

53

• We implement instances of the framework and report the results from its deployment
on the actual Guifi.net nodes.

The rest of the chapter is organised as follows. First, we discuss the motivation for a truth-
ful and trusted resource allocation mechanism in § 5.1. Next, we provide the system model
in § 5.2. We present the framework for simulating the auctioneer in § 5.3, and we illustrate
its applicability to the execution of two different auction mechanisms, with different compu-
tational properties, in § 5.3.3. We discuss results from the experiments using a prototype for
distributed auctioneer in § 5.4.

5.1 Motivations

We have seen in Chapter 4 how incentives based resource regulation is important to encour-
age contribution and thus ensure a sustainable community cloud ecosystem. However, the
mechanisms in Chapter 4 assume the users will always follow the prescribed polices, and just
like in community networks, the social context and the ties between the community would
be sufficient to correct any erroneous behaviour. But these assumptions do not always hold
true, especially when the community cloud would grow to a large user base. With weakening
of any direct social interaction, the system may be open to abuse by the selfish or malicious
users. This can negatively impact the viability of community cloud model.

In order to understand better the implications of untruthful behaviour, we study the effects
of untruthfulness on the utility obtained by the users and the social welfare of the overall sys-
tem [Kha+15b]. We first present a model that differentiates between cloud applications with
different priority classes. Next, we use this model to evaluate the impact of untruthfulness
on the social welfare through simulation experiments, for the different pricing mechanisms
proposed in the literature [MT14].

5.1.1 SystemModel

We consider a bandwidth provider 𝒫 in the community network and a set of N users
{1, 2, … 𝑁}. The provider operates a gateway to the Internet, which allows access to re-
sources outside the community network for the users. The users are connected to the
provider’s gateway through the wireless and fibre links in the community network [Bai+15b],
and the applications in community network cloud access their external servers and Internet
through this gateway. Figure 5.1 shows the users in the community network connected to

54

the provider through multiple such paths, where only few of these users are the clients of the
provider for reserving bandwidth.

The provider processes the requests in a queue at the gateway, where time in the queue is
divided into an infinite sequence of slots starting from 1, where all the available bandwidth
is allocated to exactly one user in each slot. The provider allocates the slots in batch after
receiving all the requests from 𝑁 users and assigns the next 𝑁 slots, one to each user. We
choose this model for simplicity, and we divide users into different priority classes based on
their slots in the queue, as discussed below. Our findings are applicable to other models, for
instance where all the available bandwidth is shared between the users at the same time. In
this case, we can have priority classes based on the quality of different links, for example.
Considering the provider has two links to the Internet, high priority requests are assigned
to the better link with low latency, less packet loss, etc., while the low priority requests are
assigned the other link. The discussion and findings presented below can equally apply to
this alternate model as well.

Wedivide the users into twopriority classes, ℎ ∈ {0, 1}, somehave lower priority requests,
ℎ0, and some have higher priority requests, ℎ1. Here in this model, the main consideration
for higher priority requests is that they are more sensitive to the waiting time, and prefer to
reserve earlier slots in the queue. Provider 𝒫 aims for an optimal schedule when allocating
the slots to the users, so as to maximise its revenue and the overall utility for all the users. We
provide formal details below.

Schedule A schedule 𝜙 maps each time slot 𝑡 to a user 𝑖.

Value For any schedule 𝜙 and user 𝑖, let 𝑡 be the slot assigned to user 𝑖, then 𝑣𝑖(ℎ, 𝑡) is the
valuation given by 𝑖 for being allocated time slot 𝑡, where ℎ ∈ {0, 1} is the priority class of
the user. 𝑣𝑖 is communicated by each 𝑖 to 𝒫 beforehand.

Utility For any schedule 𝜙 which assigns user 𝑖 a slot 𝑡, the utility 𝑢𝑖(𝜙, 𝑡) for user 𝑖 is
difference between the value 𝑣𝑖 and the payment 𝑝𝑖(𝜙, 𝑡) made by user 𝑖 to 𝒫.

𝑢𝑖(𝜙, 𝑡) = 𝑣𝑖(ℎ, 𝑡) − 𝑝𝑖(ℎ, 𝑡) (5.1)

Restriction Any slot 𝑡 can be assigned to at most one user.

55

Optimization Find 𝜙 that maximises the social welfare, which is the sum of utilities 𝑢𝑖 of
all users, while fulfilling the restrictions.

maximise welfare (𝜙) = ∑
𝑖∈𝑁

𝑢𝑖(𝜙, 𝑡) (5.2)

Scheduler Function 𝑆 that maps 𝑢⃗ = (𝑢𝑖)𝑖∈𝑁 to optimal 𝜙.

Goal A user 𝑖 when submitting the request to 𝒫, declares the priority class ℎ𝑖 and value 𝑣𝑖,
and also the bid amount 𝑏𝑖 where applicable. When the user behaves truthfully the reported
value 𝑣∗

𝑖 is the same as her inherent value 𝑣𝑖. We want to ensure that it is in the interest of
every 𝑖 to declare her true value of 𝑣𝑖, regardless of the declared values 𝑣𝑗 for any 𝑗 ≠ 𝑖.
Such a mechanism is said to be truthful in dominant strategy, where users have no incentive
to misreport their values [NR99].

5.1.2 PricingMechanisms

Given the above model, the prices are calculated for the bandwidth usage according to differ-
ent mechanisms [MT14].

Fixed Pricing In the case of fixed usage-based pricing, all the users pay the identical price
𝑐0 for each unit of bandwidth consumed, which is constant irrespective of the priority class.

Priority Pricing In the case of priority pricing, users pay according to the priority class ℎ.
Since in our model, there are only two priority classes ℎ0 and ℎ1, provider 𝒫 charges two
different prices 𝑐ℎ0

and 𝑐ℎ1
per unit of bandwidth, respectively.

First-Price Auction In the case of sealed first-price auction, users make different bids 𝑏𝑖
depending on their priority class ℎ, with high priority requests quoting higher bid amounts
in general. Each winning user pays their bid amount.

𝑝𝑖(𝜙, 𝑡) = 𝑏𝑖 (5.3)

56

Generalised Second Price (GSP) Auction In a generalised second price (GSP) auction, users
make different bids 𝑏𝑖 but in this case the winning user pays the amount corresponding to the
next highest bidder [Jan+11]. So the user with the highest bid pays the amount of the second
highest bidder, and the second highest bidder pays the amount of the third highest bidder,
and so on.

Vickrey-Clarke-Groves (VCG) Auction VCG is a second-price sealed-bid auction based
mechanism, which ensures truthfulness and maximum social welfare [NR99], if the provider
𝒫 can calculate optimal schedule 𝜙 in polynomial time. Each user 𝑖 provides a bid 𝑏𝑖 to 𝒫,
and given a schedule 𝜙, each user 𝑖 pays the price 𝑝𝑖(𝜙, 𝑡) according to:

𝑝𝑖(𝜙, 𝑡) = ∑
𝑗!=𝑖
𝑗∈𝑁

(𝑣𝑗(ℎ, 𝜙′) − 𝑏𝑗) − ∑
𝑗!=𝑖
𝑗∈𝑁

(𝑣𝑗(ℎ, 𝜙) − 𝑏𝑗) (5.4)

where 𝜙 and 𝜙′ are the schedules that maximise ∑
𝑖∈𝑁

𝑢𝑖 while including and excluding

the bid 𝑏𝑖 by user 𝑖 from the allocation respectively.

5.1.3 Scheduling Algorithm

We consider a simple scheduling algorithm which applies a greedy approach for mapping
users’ requests to the available slots. Algorithm 5.1 shows the scheduling algorithm, where 𝒫
assigns the slots to the users in non-increasing order of their reported bids (and corresponding
ℎ𝑖 and 𝑣𝑖) for the bandwidth resource. The prices calculated are dependent on the pricing
mechanism, the priority class ℎ of the requests, and the assigned slot 𝑡 in the schedule 𝜙. The
runtime of the algorithm is 𝑂(𝑁 𝑙𝑜𝑔 𝑁) for 𝑁 users for the different pricing mechanisms.
VCGmechanism, however, requires computing 𝑁 schedules for calculating payments for the
𝑁 winning bids, so the running time in the case of VCG is 𝑂(𝑁2 𝑙𝑜𝑔𝑁).

The greedy approach, in general, does not always provide an optimal allocation, which
is a pre-requisite for VCG mechanism. However, in the case of the model given above and
considering the step function we are going to use for 𝑣𝑖(ℎ, 𝑡) from Figure 5.2, the greedy ap-
proach from Algorithm 5.1 always returns an optimal allocation. This can be proven through
induction, and can be explained intuitively as follows. Selecting the requests with higher bids
first (corresponding to higher ℎ𝑖 and 𝑣𝑖) will always give the maximum social welfare, since
the value function in Figure 5.2 is non-increasing with time and choosing a bid with lower
amount causes a loss in social welfare which cannot be recovered as the time progresses.

57

Algorithm 5.1 Scheduling algorithm for 𝜙, allocating ⃗𝑡 slots to 𝑁 users

Input: List of users 𝑛⃗, bids 𝑏⃗, for total 𝑁 users
Output: List of assigned slots ⃗𝑡, and payments 𝑝⃗
1: Sort 𝑛⃗ users in non-increasing order on their bids 𝑏⃗
2: for 𝑖 = 1, … 𝑁 do
3: ⃗𝑡[𝑖] ← 𝑛⃗[𝑖] ▷ Assign slots
4: end for
5: for 𝑖 = 1, … 𝑁 do
6: 𝑝⃗[𝑖] ← payment (𝑏⃗[𝑖], ⃗𝑡[𝑖]) ▷ Calculate payments
7: end for

5.1.4 Evaluation

We conduct the simulation experiments using the multi-agent programmable modelling en-
vironment NetLogo [Wil99]. In all the experiments, we consider a single provider and 500
users. We run the experiments for 1000 rounds, and plot the average values in the graphs.

For different pricingmechanisms (as explained in § 5.1.2), we use the following values. For
fixed pricing, we set 𝑐0 = 0.5. For priority pricing, we set 𝑐ℎ0

= 0.25 and 𝑐ℎ1
= 0.75. For

auctions based pricing, the bids for lower priority requests ℎ0 are uniformly distributed in the
range [0.25, 0.5], while the bids for higher priority requests ℎ1 are uniformly distributed in
the range (0.5, 0.75]. For differentiating between the twopriority classes, we choose different
time-utility functions (TUF), which in this casewe have chosen as step functions for simplicity.
According to this step function, the value 𝑣𝑖(ℎ, 𝑡), based on priority class ℎ and slot 𝑡 in
schedule 𝜙, decreases for both higher and lower priority classes after a threshold 𝑡0 = 𝑁

2 , as
shown in Figure 5.2. Specifically, for lower priority class ℎ0:

𝑣𝑖(ℎ0, 𝑡) =
⎧{
⎨{⎩

1.5 if 𝑡 ≤ 𝑁
2

1 if 𝑁
2 < 𝑡 ≤ 𝑁

(5.5)

And for high priority class ℎ1:

𝑣𝑖(ℎ1, 𝑡) =
⎧{
⎨{⎩

3 if 𝑡 ≤ 𝑁
2

2 if 𝑁
2 < 𝑡 ≤ 𝑁

(5.6)

Each user 𝑖 submits exactly one request to 𝒫, declaring her priority class ℎ𝑖, value 𝑣𝑖, and

58

t/4 t/2 3 t/4 t

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
(h
,t

)

h= h1 (Higher priority)
h= h0 (Lower priority)

Figure 5.2: Value function 𝑣𝑖(ℎ, 𝑡) for user 𝑖 based on priority class ℎ and slot 𝑡 in schedule

bid amount 𝑏𝑖 where applicable. Both the priority classes, ℎ0 and ℎ1 occur with the same
probability, so almost half of the requests are of higher priority, and the rest are of lower prior-
ity. We model lying behaviour of the users, by randomly flipping their reported priority class
ℎ to 𝒫, according to a uniform distribution. When the users lie, we observe the normalised
difference from the case where all the users are truthful. Here, 𝑢∗

𝑖(𝜙, 𝑡) indicates the case
where the users lie to 𝒫, and 𝑢𝑖(𝜙, 𝑡) where all the users are truthful.

𝛥 welfare =
∑
𝑖∈𝑁

𝑢∗
𝑖(𝜙, 𝑡) − ∑

𝑖∈𝑁
𝑢𝑖(𝜙, 𝑡)

∑
𝑖∈𝑁

𝑢𝑖(𝜙, 𝑡)
(5.7)

Social Welfare

Figure 5.3 shows how social welfare is affected when the probability 𝑝 (𝑙𝑦𝑖𝑛𝑔) of a user mis-
reporting her value to 𝒫 increases up to the point where 90% of the users may be lying. As
expected, social welfare decreases as the probability of lying increases, since 𝒫 fails to alloc-
ate better slots for higher priority requests. All the pricing schemes behave similarly as the
proportion of lying users increases, except VCG which performs marginally better in that
social welfare is slightly higher for VCG as compared to the other schemes. This shows the
importance of encouraging truthful behaviour in the users for maximising social welfare.

59

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (lying)

16

14

12

10

8

6

4

2

0
∆
w
el
fa
re

%
First Price
Fixed
GSP
Priority
VCG

Figure 5.3: Percentage difference in social welfare as more users lie

Individual Gain in Utility for Different Classes

To understand how the pricing mechanisms incentivise truthfulness for different priority
classes, in the next experiment we look at the normalised difference in utility for an indi-
vidual user (on average), separately for ℎ0 and ℎ1. Here again, 𝑢∗

𝑖(𝜙, 𝑡) is the individual
utility when some of the users lie, and 𝑢𝑖(𝜙, 𝑡) is when all the users are truthful.

𝛥 utility = 𝑢∗
𝑖(𝜙, 𝑡) − 𝑢𝑖(𝜙, 𝑡)

𝑢𝑖(𝜙, 𝑡) (5.8)

Figure 5.4 shows the percentage difference in the average utility for all the users with low
priority requests. Note that this average is over all the users in ℎ0, and not only those who lie.
Users from ℎ0 may lie in order to get higher value (through reserving an earlier slot), hoping
to still pay as little as possible. Figure 5.4 shows that for fixed usage-based price, they do gain
in utility since they are paying the same amount for a better service. For priority pricing, they
gain nothing as any gains in utility are offset by the higher price. For first price and GSP
auctions, the results are similar and there are gains due to lying, though less than those in
the case of the fixed price. The first price and GSP auctions behave similarly since expected
payments are the same in the first and second price auctions, when the bids are independent
and identically distributed [MT14], as is the case in this experiment. VCG performs better
since the utility decreases as more users lie.

Figure 5.5 shows the percentage difference in the average utility for all the users with high
priority requests. Note that this average is over all the users in ℎ1, and not only those who lie.

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (lying)

40

20

0

20

40

60

80

100
∆
u
ti
li
ty

%
First Price
Fixed
GSP
Priority
VCG

Figure 5.4: Percentage difference in utility for low priority class ℎ0

Users from ℎ1 may lie in order to save on their payments, with the hope that they can still
get the same value (through keeping their earlier slot). Figure 5.4 shows that users from ℎ1,
in general, lose by lying since there is little chance that 𝒫 will assign earlier slots to the users
declaring low priority to 𝒫. So even though they save on the payments, the decrease in value
because of getting assigned later slots results in net loss for users from ℎ1.

MaximumGains

In the next experiment, we look specifically at the utility for the users that report untruthful
values to 𝒫, to see the maximum gain they can get in the utility under different pricing mech-
anisms. Figure 5.6 shows the maximum gain in utility a user from ℎ0 can get as the number
of lying users increases. Note that in this case we pick only the maximum utility for a user
from ℎ0 that is lying, averaged across all the experiment runs. The results are similar to what
we observed earlier in Figure 5.4.

Similarly, Figure 5.7 shows themaximum gain in utility a user from ℎ1 can obtain through
lying. We noticed in Figure 5.5 that on average the users from ℎ1 do not gain through lying,
but here we see that for all the pricing mechanisms except VCG, the utility for a lying user
with high priority request increases with increase in the number of lying users, though the net
gain is not significant. For VCG, the number of lying users does not have much impact, and
the loss in utility for the lying user remains almost the same. Moreover, first price and GSP
auctions perform better than priority pricing here. The user can have a net gain in utility by
misreporting her priority class as ℎ0 when more than half of the users are lying in the case of

61

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (lying)

35

30

25

20

15

10

5

0

5
∆
u
ti
li
ty

%
First Price
Fixed
GSP
Priority
VCG

Figure 5.5: Percentage difference in utility for high priority class ℎ1

priority pricing.

5.1.5 Discussion

We find that static pricing schemes like fixed usage-based pricing and priority pricing are not
very useful for arbitration between requests from different priority classes, since it is hard to
avoid everyone reporting their requests as higher priority [MT14]. Dynamic pricing, for ex-
ample, based on first-price auction can help here but with this simple auction scheme users
report bid amounts lower than their true valuation of the bandwidth resource [MT14]. VCG
mechanism, when either using optimal allocation algorithms [NR99] or approximate alloc-
ation algorithms [Zha+15b], can ensure truthfulness but is often computationally intensive
to implement in practice. Generalised second price (GSP) auction mechanism, an extension
of VCG, is not as computationally intensive as VCG and even though it doesn’t guarantee
truthfulness, it shares many desirable properties of VCG [MT14].

These results show that auction-based mechanisms are good candidates for using in alloc-
ation algorithms for bandwidth reservation in community network clouds. However, these
mechanisms assume that a centralised auctioneer exists that can be trusted to to execute the
allocation algorithm as designed. In the absence of a trusted auctioneer, the truthfulness guar-
antees of mechanisms like GSP and VCG no longer hold. To address the shortcoming that a
centralised trusted auctioneer is not feasible in community network clouds, we present our
proposal for a virtual distributed auctioneer in § 5.3.

62

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (lying)

40

20

0

20

40

60

80

100
∆
u
ti
li
ty

%
First Price
Fixed
GSP
Priority
VCG

Figure 5.6: Maximum gain in utility for a user from low priority class ℎ0

5.2 SystemModel

We define the family of resource allocation auctions, the requirements of a distributed simu-
lation of the auctioneer, and the Game Theoretical model used to analyse simulations. These
provide basis for our proposed framework for distributed auctioneer (§ 5.3).

5.2.1 Resource Allocation Auctions

Consider a family of auctions with 𝑚 providers, 𝑛 users, and an auctioneer. Providers sell
multiple resources with a limited capacity, in exchange for payments in some currency. Users
arewilling to pay to the providers in exchange for the allocation of aminimumamount of each
resource in the provider. The auctioneer defines an allocation between users and providers
that is feasible (i.e., that does not exceed the capacity of each resource in any provider) and
defines the payments to be made/received by the users/providers, respectively. Both users
and providers attribute a utility to each allocation, which is a function of the value given to
the allocation and the payments made/received. More precisely, each user 𝑖 has a valuation
𝑣𝑖 specifying how much 𝑖 is willing to pay for the allocation of a unit of each resource in each
provider; 𝑖’s utility is the difference between the total value attributed by 𝑖 to the allocation
and the payments made by 𝑖. On the other hand, the valuation 𝑣𝑗 of a provider 𝑗 specifies
how much 𝑗 wants to be paid for allocating a unit of each resource; 𝑗’s utility is the difference
between the payments received by 𝑗 and the total value attributed by 𝑗 to the allocation.

Note that in the context of our model, providers are the owners of the gateways, and have

63

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (lying)

35

30

25

20

15

10

5

0

5

10
∆
u
ti
li
ty

%
First Price
Fixed
GSP
Priority
VCG

Figure 5.7: Maximum gain in utility for a user from high priority class ℎ1

direct access to the Internet, while bidders have no direct access to the Internet and rely on
these gateways. The role of auctioneer can be taken by one of the providers, or a chosen third
party, or in the case of our proposed distributed auctioneer, simulated by some providers
in a distributed fashion. We consider resource to be the bandwidth external to the network
available at the gateways.

We will analyse two types of auctions: standard and double that differ only in who are the
bidders (entities that submit bids). In a standard auction, only the users are bidders. Each
user 𝑖 submits a bid 𝑏𝑖 to the auctioneer declaring 𝑣𝑖. Then, the auctioneer executes an al-
gorithm 𝒜 that returns a feasible allocation and the respective payments. The algorithm 𝒜
must satisfy three properties: (1) it must maximise, in expectation, the social welfare, defined
as the total value attributed by users to the allocation; (2) it must achieve truthfulness in ex-
pectation, i.e. no user may increase its expected utility by lying in its bid; and (3) it must
be computationally efficient. In a double auction, the auctioneer collects bids from both the
users and the providers. The social welfare is now the difference between the total value of
the users and the total value of the providers. In addition to the above three properties, 𝒜
should also satisfy budget balance, which is the property that the total value paid by users cov-
ers the total payments made to the providers. Unfortunately, it was shown that no algorithm
can simultaneously satisfy truthfulness in expectation, maximal social welfare, and budget
balance [MS83]. In practice, it is common to aim at a combination between truthfulness in
expectation and either one of the other two properties.

64

5.2.2 Distributed Auctioneer Simulation

In our setting, no single entity can be trusted with the role of the auctioneer, since every en-
tity may increase its utility by manipulating the execution of 𝒜. Specifically, a provider may
devise a sub-optimal schedule that provides him with a higher payment; similarly, a bidder
may manipulate the execution of 𝒜 to decrease his payment. We address this problem by
simulating the role of the auctioneer through a distributed protocol. The idea is to replicate
the execution of 𝒜 inmultiple entities and use cross-validation of the results of the redundant
computations. Providers are especially suited for this purpose, since they may be willing to
offer their resources for the execution of 𝒜 in exchange for payments from the users. There-
fore, we focus on distributed protocols executed among sets of providers that deviate from
the protocol only if they gain by doing so.

Now, we specify requirements for a correct simulation of the auctioneer. Normally, the
auctioneer collects a vector 𝑏⃗ of bids and executes 𝒜 with input 𝑏⃗. In a simulation, each
provider 𝑗 must collect a vector 𝑏⃗𝑗 of bids sent to 𝑗 and use it as input of a distributed protocol
that simulates 𝒜. This requires bidders to submit a bid to all providers. We consider that
biddersmay adopt arbitrary behaviours such as submitting different bids to different providers
or not submitting a bid. Nevertheless, we assume that every provider 𝑗 eventually collects a
vector 𝑏⃗𝑗 to be used as input in the simulation, containing a bid for every bidder 𝑖, and if 𝑖 is
correct, then 𝑗 receives the bid of 𝑖 prior to the simulation. In practice, bidders are expected
to submit their bids by some deadline; if a bidder fails to do so or sends an invalid bid, then
the provider may use the special value ⊥ instead. We want a simulation of the auctioneer to
simulate 𝒜 on some input 𝑏⃗ that contains at least the bids sent by correct bidders, regardless
of the bids of remaining bidders.

More precisely, let 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗) be the probability of algorithm 𝒜 outputting an allocation
𝑥 and vector of payments 𝑝⃗, when executed on input 𝑏⃗ by a trusted auctioneer. We denote by
𝑏𝑗

𝑖 the bid submitted by bidder 𝑖 to provider 𝑗 in a simulation. Let 𝑏⃗𝑗 be the vector of all bids
sent to 𝑗. If 𝑖 does not submit a valid bid to 𝑗, then we take 𝑏𝑗

𝑖 to be a neutral bid (i.e., a bid
that excludes 𝑖 from the auction). In a simulation of the auctioneer, each provider 𝑗 inputs 𝑏⃗𝑗

and outputs a pair (𝑥, 𝑝⃗) composed by an allocation 𝑥 and a vector of payments 𝑝⃗, or outputs
a special value ⊥ that signals the abortion of the simulation. We say that the outcome is (𝑥, 𝑝⃗)
if all providers output this pair, otherwise, the outcome is ⊥. This has the consequence that
the mechanism is not resistant to faults or Byzantine behaviour, since even a single missing
or different value in the output can abort the whole allocation process, and we leave it for the
the future work (§ 6.2). We assume that an external mechanism guarantees that (1) when the

65

outcome is ⊥, the auction is aborted, and (2) when the outcome is (𝑥, 𝑝⃗), the allocation 𝑥 is
enforced and all entities perform or receive their respective payments. We can now provide a
precise definition of correct simulation.

Definition 5.1. A simulation is said to be correct if and only if, for all vectors (𝑏⃗𝑗)𝑗, the outcome
is (𝑥, 𝑝⃗) with probability 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗), where 𝑏⃗ only contains valid bids and, for all bidders 𝑖
such that 𝑏𝑗

𝑖 = 𝑏′
𝑖 for every provider 𝑗, we have 𝑏𝑖 = 𝑏′

𝑖.

5.2.3 Game Theoretical Model

We consider the model of extensive form games played in asynchronous systems proposed
in [ADH13]. There are 𝑚 > 1 players corresponding to the providers of the resource alloca-
tion auction. Providers may form coalitions of size at most 𝑘. We assume that each provider
has a unique identifier, known to every other provider. Time is divided into turns. In each
turn, some provider 𝑗 is chosen to move: 𝑗 first receives messages sent to it in the previous
round, performs some computation, and sends messages. A schedule specifies which pro-
vider moves at each turn and which messages it receives. We assume that communication
channels are reliable, so every message sent is eventually delivered. We focus on schedules
that are fair in the sense that every provider 𝑗 is scheduled to move infinitely often, such that,
for all turns 𝑡, there exists a turn 𝑡′ > 𝑡 when 𝑗 is scheduled to move. This is necessary to
ensure progress.

Now, we want to define a notion of equilibrium for this setting. For this, we need an exact
definition of protocol and utility. A protocol specifies, for each schedule, a probability distri-
bution over the computation performed by each provider 𝑗 and themessages sent at each turn
where 𝑗 moves, as a function of the history ofmessages sent and received in previous turns. In
addition, since we analyse protocols as modules with input and output values, the protocols
also specify the values used as input and output by each provider. The utility of providers is a
function of the outcome of the simulation: if the outcome is ⊥, then the utility is 0, else the
utility is the difference between the payments received and the value of the allocation. Given
this, the utility of a user 𝑖 is also 0 if the outcome is ⊥, or is the difference between the value
of the allocation and the payments made. The expected utility conditioned on the schedule is
computed according to the probability distribution over outcomes induced by the protocol.

For the definition of equilibrium, we consider the notion of 𝑘-resilient (ex post) equilib-
rium introduced in [ADH13]. This notion is a refinement of Nash equilibrium that incorpor-
ates collusion and asynchrony. Namely, collusion is modelled as sets 𝐾 of at most 𝑘 providers

66

that coordinate on any joint protocol; we require that no provider in 𝐾 can increase its expec-
ted utility if providers in 𝐾 deviate from the specified protocol, given that other providers
do not deviate. Asynchrony is modelled in an ex post way by assuming that providers are
informed about the schedule when computing the expected utility. This is the strongest re-
quirement for this setting.

Definition 5.2. A protocol 𝑃 is a 𝑘-resilient (ex post) equilibrium if and only if for all fair
schedules and coalitions 𝐾 such that |𝐾| ≤ 𝑘, there is no provider in 𝐾 that increases its
expected utility when providers in 𝐾 follow a joint protocol 𝑃 ′ ≠ 𝑃 , given that providers not
in 𝐾 follow 𝑃 .

An important aspect of this definition is that a 𝑘-resilient equilibrium protocol 𝑃 satisfies
the property that no provider increases its expected utility by lying about its input, hence
𝑃 achieves truthfulness regarding the inputs of the providers to a simulation. Specifically,
at every invocation, we say that provider 𝑗 has input 𝑣 if, by following 𝑃 , 𝑗 is expected to
input 𝑣, so truthfulness implies that 𝑗 does not input 𝑣′ ≠ 𝑣. By the truthfulness of 𝒜, every
bidder 𝑖 maximises its expected utility by sending 𝑏𝑖 = 𝑣𝑖 to all providers, regardless of other
bids. This implies that to fulfil our goals it suffices to devise protocols that are 𝑘-resilient and
correctly simulate the auctioneer.

5.3 The Distributed Auctioneer

We propose a framework for devising distributed protocols executed by the providers that
correctly simulate the auctioneer. The framework is sufficiently general to simulate different
auctions. To illustrate its applicability, we provide two implementations of the framework for
standard and double bandwidth allocation auctions, respectively. We describe the framework
in two steps. First, we provide a general definition where we do not specify the details about
how to implement the simulation of the algorithm 𝒜. Then, we describe how to simulate 𝒜
by leveraging parallelism to speed up its execution.

5.3.1 General Framework

The input of the framework at each provider 𝑗 is a vector 𝑏⃗𝑗 of bids submitted to 𝑗 and the
output is either a pair (𝑥, 𝑝⃗) containing an allocation 𝑥 and a vector of payments 𝑝⃗ or the spe-
cial value ⊥. As illustrated in Figure 5.8, the framework chains the execution of two building
blocks: bid agreement and allocator. Each provider 𝑗 inputs 𝑏⃗𝑗 to the bid agreement, which

67

1

2

m

B
A A

1

2

m

bidders submit bids bidders collect results

ProvidersProviders

.

.

.

.

.

.

Framework

bm

b1

b2

b

b

b (x,p)

(x,p)

(x,p)

Figure 5.8: Framework: Bid Agreement (BA) and Allocator (A)

outputs either a vector 𝑏⃗ or ⊥. In the former case, 𝑗 inputs 𝑏⃗ to the allocator. If all providers
follow the protocol, then the bid agreement ensures that they all output some vector 𝑏⃗ contain-
ing all valid bids, and the allocator ensures that they all output a pair (𝑥, 𝑝⃗) with probability
determined by 𝒜.

In the following paragraphs, we describe each block in more detail by defining properties
that must be satisfied by any implementation of the block, and then show in the analysis that
every implementation of the framework is 𝑘-resilient and correctly simulates the auctioneer
based only on the properties of the blocks. This makes the proof independent from the actual
implementation. In all blocks, an implementation 𝑃 must satisfy the property of 𝑘-resiliency
for solution preference, i.e., 𝑃 must be a 𝑘-resilient equilibrium, under the assumption that
players have preference for a solution and number of agents not in the same coalition is suf-
ficiently high. Specifically, the output of every block is either some valid value or ⊥. We can
split the set of outcomes of the block (combinations of outputs) into the set 𝐴 of solutions
where all providers output the same valid value and the set 𝐵 of remaining outcomes. In a
correct execution, we want the outcome to lie in 𝐴. To ensure this and that the protocol is a
𝑘-resilient equilibrium, we need to assume that providers obtain a higher utility for outcomes
in 𝐴 than for outcomes in 𝐵 (preference for a solution), and 𝑚 > 𝑓(𝑘) for some function
𝑓 defined for every 𝑘 > 0. The assumption of preference for a solution of the framework is
equivalent to providers preferring to receive the payments.

68

Bid Agreement

The input at provider 𝑗 is the vector 𝑏⃗𝑗 of bids sent to 𝑗. The output is a vector 𝑏⃗ or the
special value ⊥. In addition to 𝑘-resiliency for solution preference, this block must ensure
two conditions when all providers follow the protocol: (1) eventual agreement, defined as all
providers eventually outputting the same vector 𝑏⃗, and (2) validity, defined as, for every bidder
𝑖 that submits the same bid 𝑏′

𝑖 to all providers, the output at every provider is 𝑏𝑖 = 𝑏′
𝑖.

Property 5.1. A protocol 𝑃 implements bid agreement if and only if it satisfies two condi-
tions: (1) if all providers follow 𝑃 , then 𝑃 satisfies eventual agreement and validity; and (2)
𝑘-resiliency for solution preference.

If we can assume that the bids of malicious bidders are obtained from a finite set of val-
ues and are equally likely, then a suitable approach is to use the rational consensus protocol
proposed in [Afe+14], which has inputs {0, 1} and outputs in {0, 1, ⊥}, and satisfies the
following two properties: (a) if all providers follow the protocol, then all providers eventually
output the same bit, which is input by some provider; and (b) 𝑘-resiliency for solution pref-
erence, assuming 𝑚 > 2𝑘 and that the input of every provider not in the same coalition is
either the same value or is 0 or 1 with equal probability. This protocol can be used to imple-
ment the bid agreement as follows. For each bidder 𝑖, provider 𝑗 generates a stream of bits
uniquely determined from 𝑏𝑗

𝑖 and inputs each bit to a rational consensus instance; if some in-
stance outputs ⊥, then 𝑗 outputs ⊥, otherwise, 𝑗 converts the stream to a bid 𝑏𝑖 and outputs
a bid 𝑏∗

𝑖, where 𝑏∗
𝑖 = 𝑏𝑖 if 𝑏𝑖 is valid, or 𝑏∗

𝑖 is some pre-determined valid bid otherwise. To
distinguish between different instances of rational consensus, providers may append to the
messages of each instance the identifier of each bidder and the position of each bit. Clearly,
providers only output valid bids or the value ⊥. By (a), if all providers follow the protocol,
then eventual agreement and validity hold, showing (1). Condition (2) follows directly from
(b) and 𝑚 > 2𝑘 if the input of every provider satisfies the assumptions of (b). To see why
these assumptions are true, notice that, for each bidder 𝑖, if 𝑖 is not malicious, the input of all
providers not in the same coalition is 𝑖’s true bid, and if 𝑖 is malicious, then the bid 𝑏𝑗

𝑖 sent
by 𝑖 to 𝑗 is uniformly distributed. If the set of possible bids is the set of all integers, then the
stream of bits obtained from 𝑏𝑗

𝑖 is also random. These are reasonable assumptions, since we
expect the behavior of malicious bidders to be arbitrary.

69

Allocator

The input at every provider is a vector 𝑏⃗ of bids, and the output is either a pair (𝑥, 𝑝⃗) or
⊥. We want the allocator to satisfy four conditions. First, we want the allocator to correctly
simulate 𝒜, i.e., given that all providers input the same vector 𝑏⃗ and follow the protocol, every
provider must eventually output pair (𝑥, 𝑝⃗) with probability 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗). Second, we want
resilience to collusive influences, defined as, for all coalitions 𝐾 of at most 𝑘 elements, if all
providers not in 𝐾 input 𝑏⃗ and follow the protocol, then no 𝑗 ∉ 𝐾 outputs a pair (𝑥, 𝑝⃗)
with probability higher than 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗), regardless of the protocol followed by providers in
𝐾. Intuitively, no coalition 𝐾 can influence the output of providers not in 𝐾, except that
they may output ⊥ with higher probability. Third, we want input validation to ensure that
providers have preference for solutions at the bid agreement. More precisely, if two providers
input different vectors and follow the protocol, then they both output ⊥, regardless of the
protocol followed by other providers. Finally, we want 𝑘-resilience for solution preference
given that all providers have the same input.

Property 5.2. A protocol 𝑃 implements the allocator if and only if it satisfies four conditions:
(1) correct simulation of 𝒜; (2) resilience to collusive influence; (3) input validation; and (4)
𝑘-resiliency for solution preference if all providers have the same input.

We discuss implementations of the allocator in § 5.3.2.

Analysis

We show in Theorem 5.1 that a protocol that implements our framework correctly simulates
the auctioneer and is 𝑘-resilient.

Theorem 5.1. For every protocol 𝑃 that implements the framework, 𝑃 correctly simulates the
auctioneer, and there exists a function 𝑓 such that, if 𝑚 > 𝑓(𝑘), then 𝑃 is a 𝑘-resilient equi-
librium.

Proof. First, we show that 𝑃 correctly simulates the auctioneer. Every provider 𝑗 inputs 𝑏⃗𝑗

to the bid agreement. By (1) of Property 5.1, regardless of the inputs, all providers output the
same vector 𝑏⃗ that satisfies validity. By (1) of Property 5.2, the outcome of the simulation is
pair (𝑥, 𝑝⃗) with probability 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗). This concludes the first step of the proof.

Now, we show that 𝑃 is a 𝑘-resilient equilibrium for 𝑚 > 𝑓(𝑘) for some 𝑓 . Fix a coalition
𝐾. We take 𝑓 to be larger for all 𝑘 than the minimum value of 𝑚 required by Properties 5.1

70

and 5.2. These properties imply that, if providers have preference for a solution at the bid
agreement, then the implementations of bid agreement is 𝑘-resilient, so providers in 𝐾 prefer
to follow 𝑃 for bid agreement. Since this guarantees that all providers have the same input
at the allocator, the implementation of the allocator is also 𝑘-resilient, implying that 𝑃 is
𝑘-resilient.

Now, we show that solution preference holds for both blocks. Recall that the outcome is
not ⊥ only if providers not in 𝐾 output the same pair, and, if the outcome is ⊥, then the utility
is 0. Hence, providers in 𝐾 prefer (obtain an expected utility at least as high) that providers
not in 𝐾 output the same pair (𝑥, 𝑝⃗); in this case, they clearly prefer to output (𝑥, 𝑝⃗) as well,
thus they have preference for a solution at the allocator. Now, consider the bid agreement.
The utility of an outcome of this block is the expected utility given that providers not in 𝐾
follow 𝑃 and providers in 𝐾 follow an arbitrary protocol. Clearly, providers in 𝐾 prefer that
no provider in 𝐾 outputs ⊥. By (3) of Property 5.2, providers in 𝐾 prefer that all providers
not in 𝐾 output the same vector. By (2) of Property 5.2, providers in 𝐾 cannot increase the
probability of any outcome of the framework other than ⊥ by deviating, thus, they cannot
increase their expected utility by outputting a vector 𝑏⃗′ ≠ 𝑏⃗ at the bid agreement. This shows
that providers have preference for a solution at the bid agreement, concluding the proof.

5.3.2 Parallel Allocator Framework

We describe a framework for implementations of the allocator that satisfy Property 5.2. We
explore the possibility of parallelising the execution of 𝒜 in multiple providers. Although
this approach introduces the overhead of communication between providers, since 𝒜 is often
computationally intensive, its parallelisation compensates for this overhead.

The framework consists in an initial invocation of a building block for input validation
followed by the simulation of 𝒜, which invokes two additional building blocks: data transfer
and common coin. The input is a vector of bids and the output is either ⊥ or a pair (𝑥, 𝑝⃗).
At the invocation of each block, providers either output a valid value or ⊥; in the latter case,
they output ⊥ at the allocator. To describe the simulation of 𝒜, it is useful to characterise the
execution of 𝒜 in terms of a graph of tasks, where nodes correspond to tasks to be executed
in sequence and edges represent data dependencies. This graph establishes a partial order of
tasks; every two tasks that are not ordered can be executed in parallel by different providers.
Figure 5.9 gives an example of a graph of 4 tasks, where tasks T2.1 and T2.2 can be executed
in parallel. To cope with collusion, each task 𝑇 is assigned to a set 𝑆 of at least 𝑘+1 providers.
If a task 𝑇 ′ is to be executed by a set 𝑂 ≠ 𝑆 of providers and 𝑇 ′ depends on the result of 𝑇 ,

71

T3T1

T2.1

T2.2

Figure 5.9: Decomposition of the Allocator into Tasks

then the providers of 𝑆 transfer data to the providers of 𝑂 using the data transfer building
block. In a correct simulation of 𝒜, there must be one final task that depends on all other
tasks, where all providers gather all the required data to produce the final output. Whenever
providers need a random number distributed according to a probability distribution 𝛱, they
invoke the common coin with input 𝛱. Figure 5.10 illustrates the framework for the task
decomposition of Figure 5.9.

As in the previous section, we describe properties that must be satisfied by the implement-
ations of each block and then show that every implementation of this framework satisfies
Property 5.2.

Input Validation

The input is a vector 𝑏⃗ and the output is either ⊥ or 𝑏⃗. We want an implementation to satisfy
𝑘-resiliency for solution preference and that all providers eventually output 𝑏⃗ given that they
all input 𝑏⃗, and we need to satisfy (3) from Property 5.2.

Property 5.3. An implementation 𝑃 of the input validation must satisfy three conditions: (1)
if two providers follow 𝑃 and have different inputs, then they eventually output ⊥; (2) if all
providers follow 𝑃 with the same input 𝑏⃗, then they eventually output 𝑏⃗; and (3) 𝑘-resiliency for
solution preference if all providers have the same input.

A simple implementation is to have providers broadcasting their vectors of bids and out-
putting ⊥ when two different vectors are detected. This clearly satisfies (1) and (2), whereas
(3) is immediately true if providers have preference for a solution and 𝑚 > 𝑘.

72

1

2

4

Providers Allocator

b

b

b (x,p)

(x,p)

(x,p)

T1

3

1

2

4

3

(x,p)

T1

T2.1

T2.1

T2.2

b
T2.2

D
T

T3

T3

T3

T3

CC

I
V

T1

T1

Providers

Figure 5.10: Parallel Allocator: Input Validation (IV), Data Transfer (DT), and Common Coin (CC)

Common Coin

The input is a probability distribution 𝛱 and the output is either ⊥ or a number distributed
according to 𝛱. Given that all providers have the same input, we want the common coin to
satisfy 𝑘-resilience for solution preference and to output the same random number.

Property 5.4. Given that all providers have input 𝛱, an implementation 𝑃 of the common
coin must satisfy two conditions: (1) if all providers follow 𝑃 , then they eventually output the
same value distributed according to 𝛱; and (2) 𝑘-resiliency for solution preference.

A possible implementation of the shared coin is the protocol from [ADH13]. The idea is
that every provider 𝑗 commits to a random number 𝑟𝑗 ∈ [0, 1], before learning the random
numbers of every other provider not in its coalition. Then, providers reveal all random num-
bers and compute the output by summing all numbers modulo 1. If some provider 𝑗 sees
a number not in [0, 1] or some provider does not send a random value compatible with its
commitment, then it outputs⊥. Otherwise, 𝑗 applies a transformation on the computed value,
which is uniformly distributed in [0, 1], to produce an output that is distributed according to
𝛱.

It is clear that all providers output the same random number distributed according to the
common input 𝛱 if they follow the protocol. Assuming that 𝑚 > 𝑘, no provider 𝑗 can
manipulate the probability distribution of the output by not committing to 𝑟𝑗 selected at ran-

73

dom without some provider outputting ⊥, even if 𝑗 is in a coalition of at most 𝑘 providers.
Therefore, the protocol satisfies 𝑘-resiliency for solution preference.

Data Transfer

A set 𝑆 of providers inputs a value from a domain 𝐷. Providers from a set 𝑂 either output
a value from 𝐷 or ⊥. When all providers in 𝑆 have the same input, we want them to output
the same value in 𝐷 when they follow the protocol. We only require an implementation to
be 𝑘-resilient if |𝑆|, |𝑂| > 𝑘, since otherwise coalitions can always manipulate the output of
this block.

Property 5.5. Given that |𝑆|, |𝑂| > 𝑘 and all providers have the same input 𝑣, an implement-
ation 𝑃 of the data transfer must satisfy two conditions: (1) if all providers follow 𝑃 , then they
eventually output 𝑣; and (2) 𝑘-resiliency for solution preference.

We propose a simple 𝑘-resilient implementation of this block, where providers in 𝑆 broad-
cast their input to all providers in 𝑂. In the end, if some provider 𝑗 ∈ 𝑂 detects two different
values, then 𝑗 outputs ⊥. Given that all providers have input 𝑣 and that |𝑆|, |𝑂| > 𝑘, they
eventually output 𝑣, and no coalition 𝐾 of up to 𝑘 providers can cause all providers to output
𝑣′ ∉ {𝑣, ⊥}. By solution preference, no provider in 𝐾 gains if someone lies about the input
𝑣 or omits a message.

Analysis

Theorem 5.2 shows that every implementation of the above framework satisfies the four con-
ditions of Property 5.2.

Theorem 5.2. Every protocol 𝑃 that implements the parallel allocator satisfies Property 5.2.

Proof. We show that 𝑃 ensures (1) correct simulation of 𝒜; (2) resilience to collusive influ-
ence; (3) input validation; and (4) 𝑘-resiliency for solution preference if all providers have the
same input. First, we show (1). Suppose that all providers input the same vector 𝑏⃗ and follow
𝑃 . We show that every provider outputs the same pair (𝑥, 𝑝⃗) with probability 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗).
We show using induction that, if the decomposition of 𝒜 into tasks is done correctly and we
fix all random numbers, then at every task 𝑇 every provider 𝑗 that executes 𝑇 has the same
output that she would have if 𝑗 executed 𝒜 locally with the same random numbers. This
is true for the first task by (2) of Property 5.3. In the inductive step, the input at each task

74

depends only on the output of a set of tasks. For each of those tasks 𝑇 , by the induction hy-
pothesis, a set 𝑆 of at least 𝑘 + 1 providers computes the same result and inputs it to the data
transfer; by (1) of Property 5.5, all providers that execute 𝑇 receive that value and perform the
same computation as they would if they were executing 𝒜. This implies that all providers out-
put the same pair at the end. By (1) of Property 5.4, at every invocation of the common coin,
all providers input the same distribution 𝛱 and output the same random number distributed
according to 𝛱, where 𝛱 is specified by 𝒜. This proves (1).

Now, we show (2). Fix a coalition 𝐾 and suppose that all providers not in 𝐾 follow 𝑃 with
input 𝑏⃗ and providers in 𝐾 follow an arbitrary 𝑃 ′ ≠ 𝑃 . The only way that providers in 𝐾
could cause providers not in 𝐾 to return pair (𝑥, 𝑝⃗) with probability higher than 𝒜(𝑥, 𝑝⃗ ∣ 𝑏⃗)
is if the result of some task used in the input of another task or as the final output is not
distributed as specified by 𝒜 and 𝑏⃗. Since each task is executed by more than 𝑘 providers,
using an identical reasoning to the proof of (1), we can show using induction that providers
in 𝐾 cannot manipulate the probability distribution over the results of each task, except only
by increasing the probability of some provider not in 𝐾 outputting ⊥. Here, we use the fact
that, by (3) of Property 5.3 and (2) of Properties 5.4, 5.5, providers in 𝐾 cannot manipulate
the probability distribution over outputs of the building blocks in a way that increases the
expected utility of some provider in 𝐾. This proves (2).

Condition (3) follows by (2) of Property 5.3. To show (4), we first need to prove that pro-
viders have preference for a solution at all invocations of building blocks, assuming that they
have preference for a solution of the allocator. Fix a coalition 𝐾. It is clear that providers in
𝐾 prefer that providers not in 𝐾 do not output ⊥ at all invocations. Now, we use backward
induction to show that they prefer that providers not in 𝐾 never return different values. In
the last invocation, this is clearly true by preference for a solution of the allocator. Continuing
backwards, if two providers not in 𝐾 output different values at the same invocation of some
block, then either they output different pairs at the end or input different values at the follow-
ing invocation of the data transfer, which by the hypothesis is never preferable to outputting
the same value at the considered invocation. By the proof of (2), providers in 𝐾 cannot ma-
nipulate the final outcome by not outputting the same values at all invocations, so they also
prefer to output the same values as providers not in 𝐾, showing solution preference at all
invocations. This also shows that providers prefer to have the same input at all invocations.
Thus, given that all providers have the same input, no provider in 𝐾 can increase its expected
utility if some provider 𝑗 ∈ 𝐾 does not compute each task correctly. By (3) of Property 5.3
and (2) of Properties 5.4 and 5.5, 𝑃 is a 𝑘-resilient equilibrium.

75

5.3.3 Resource Allocation Instances

We now show how our framework can be applied to two different bandwidth allocation prob-
lems in the context of community networks. For that purpose, we resort to two different
algorithms that have been proposed in the literature to solve bandwidth allocation for users
in providers. These algorithms rely on standard and double auctions respectively, and have
different computational properties: the double auction algorithm provides an example of a
graph with only one task that is not computationally intensive, such that decomposing its
execution into parallel tasks does not provide a performance gain; the standard auction al-
gorithm provides a graph with multiple computationally intensive tasks that can be parallel-
ised. Later in the chapter (§ 5.4), we will use these examples to evaluate the performance of
implementations of the framework. We use the double auctions example to measure a worst-
case overhead of executing all building blocks of the framework compared to an execution
with a centralised trusted auctioneer, and we use the standard auctions example to show that
the improvements of parallelisation can outweigh the added overhead when the execution
time is dominated by computation.

Double Auction

Consider an auction where each provider has a limited bandwidth to be allocated to multiple
users, and each user has a demand of bandwidth that may be satisfied by multiple providers.
Both the users and the providers declare in their bids the value given to a unit of allocated
bandwidth. An allocation gives the amount of bandwidth for each user allocated in each pro-
vider. Wewant to ensure truthfulness in expectation and budget balance. For this purpose, we
use the algorithm 𝒜 of [Zhe+14], which provides the above properties at the expense of social
welfare. The idea is to order the providers by increasing value and to order the users by de-
creasing value. Then, users are allocated by their order to the providers using the water-filling
method: the maximum amount of bandwidth of each user is allocated to the first available
provider without exceeding its capacity, and any unsatisfied demand of that user is allocated
to the following providers using the same method. Since the most computationally intensive
task of this algorithm is sorting, in most practical settings there is no performance gain in
parallelising the execution of 𝒜. Instead, every provider executes 𝒜 locally and outputs the
result. Hence, we never need to invoke the data transfer building block.

76

Algorithm 5.2 Standard auction allocator
1: Task 1: Calculate the allocation solution 𝑥
2: for Each subset 𝑆 of bidders in parallel do
3: Task 2.𝑆: calculate payment 𝑝𝑗 of every 𝑗 ∈ 𝑆
4: end for
5: Task 3: Collect the outputs of each task with the data transfer and output (𝑥, 𝑝⃗)

Standard Auction

Consider a variation of the double auction where providers do not send bids and each bid-
der can only have its bandwidth demand allocated in a single provider. Here, we aim for
truthfulness in expectation, maximal social welfare, and computational efficiency. It is well
known that a VCG mechanism can be used to provide the first two guarantees. The difficulty
is that determining the maximal social welfare is in general an NP Hard problem, which con-
flicts with the goal of computational efficiency. To address this issue, we use the algorithm
of [Zha+15b] which adapts the VCG mechanism to achieve a tradeoff between the two con-
flicting requirements. Specifically, [Zha+15b] offers a (1 − 𝜖) approximation of maximal
social welfare for an arbitrarily small 𝜖, while terminating in polynomial time according to
smoothed analysis.

Interestingly, the randomised algorithm proposed in [Zha+15b] has the potential for par-
allelisation. In a course manner, the algorithm can be divided into three steps, depicted in
Algorithm 5.2. The first step derives an approximately optimal allocation of users to providers.
This step is hard to parallelise effectively in a distributed system, so we run it in a single se-
quential task. The second step calculates the payments for each user based on the result of
the first step. This step is computationally intensive and the payments for each user can be
computed independently and, therefore, can be easily parallelised. The final step gathers all
intermediate results to produce the output. In our implementation, the first and third steps
are executed by all providers. In the second step, we group the providers into 𝑐 groups, each
containing at least 𝑘 + 1 providers. Each group is assigned the computation of the payments
of a subset of 𝑛/𝑐 users. Then, all providers of a group execute the data transfer block to
transfer the resulting payments to all providers.

77

5.4 Performance Evaluation

We have evaluated the implementations of the allocator for double and standard auctions pro-
posed in § 5.3.3. The implementations of all the remaining blocks are as suggested in § 5.3.2:
we use the rational consensus algorithm proposed in [Afe+14] in the implementation of the
bid agreement, while the input validation and data transfer blocks are implemented as simple
broadcasts, and the common coin is implemented using the scheme from [ADH13]. For these
implementations to be 𝑘-resilient equilibria, we need 𝑚 > 2𝑘. This is a requirement of the
rational consensus algorithm.

Our goal is to assess the overhead of the distributed protocol, when compared to a purely
centralised solution, in the case the allocation algorithm is not parallelisable, and to assess the
potential benefits from parallelisation when computationally expensive allocation algorithms
are used. For that purpose, wemeasure performance gains for different levels 𝑝 of parallelism,
where 𝑝 = ⌊𝑚/(𝑘 + 1)⌋ is the maximum level of parallelism for each possible 𝑘 and 𝑝 = 1
represents the sequential execution by a trusted auctioneer. We consider a fixed number of
𝑚 = 8 providers in the auctions, but we vary the number of providers that execute each
protocol.

5.4.1 Hardware/Software Setup

In order to obtain a meaningful evaluation of our approach, we have resorted to a prototype
implementation on realistic hardware and software environment and deployed it in an exper-
imental testbed for community networks, namely on nodes of the Guifi.net, one of the largest
community networks in the world [Com16a]. We were given access to 4 different nodes of
the experimental testbed, 2 machines in Barcelona (UPC Campus), and one machine each in
Barcelona (Hangar) and in Taradell, Spain. When doing tests executed by more than 4 pro-
viders we have instantiated multiple VMs in each nodes, ensuring that each VM is allocated
a different CPU. The machines are Intel Core i7-3770 3.40GHz CPU with 16 GB RAM and
1 TB hard disk, running Proxmox virtualisation engine. Our experiment runs in OpenVZ
containers with Debian 7 x86 1 CPU, 2 GB RAM, and 10 GB storage. We have implemen-
ted the framework in Python, using PyPy for speed reasons, and used ØMQ [Zmq16] as the
messaging library for the communication.

We have set up a single node that acts as a client, and generates input for all the 𝑛 users.
This client node sends the requests to the 𝑚 providers, and receives the results back from
all of them. The values for running time presented in the plots capture the time from when

78

0 200 400 600 800 1000
Users (n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

m= 8 (Centralised)
m= 8, k= 1 (Distributed)

m= 8, k= 2 (Distributed)
m= 8, k= 3 (Distributed)

Figure 5.11: Running time for double auction

the inputs are generated at this client node, till the time it receives the results from all the
experiment instances. We run the experiments for 100 rounds, and plot the average values in
the graphs.

5.4.2 Double Auction Deployment

Wehave used an experimental set up similar to [Zhe+14], with some slight modifications suit-
able to our use case. In both the experiments, the double and standard auction, the bids by
the users are uniformly distributed in the range [0.75, 1.25], and the requested bandwidth
resource is uniformly distributed in the range (0, 1]. We vary the capacity of the providers de-
pending upon the overall bandwidth required, and scale it using a random factor in [0.5, 1.5]
so as to consider both the cases where providers lack the capacity to satisfy all the requests,
and where the providers have excess capacity. The providers have a unit cost of bandwidth
uniformly distributed in the range (0, 1].

Figure 5.11 shows the running time for the double auction algorithm (§ 5.3.3) as a function
of the number of users, for up to 1000 users. This algorithm has little computational overhead.
It is not easily parallelisable but, as it can be observed from the figure, this is irrelevant as the
distributed version is dominated by the communication time. Also, the communication over-
head increases as the number of users increases, sincemore data has to be exchanged between

79

the providers. The figure shows the values obtained for the centralised approach and for the
distributed implementation using different values of 𝑘 and correspondingminimum required
number of providers out of a total of 8 involved in the execution, namely, 3 providers when
𝑘 = 1, 5 when 𝑘 = 2, and 8 when 𝑘 = 3. Even when 8 providers and 1000 users are used,
the distributed implementation finishes in less than a second which is perfectly acceptable
because normally these auctions need to run with reasonable intervals between them.

5.4.3 Standard Auction Deployment

We fix the number of providers to 𝑚 = 8 and vary the maximum degree of parallelisation
by taking 𝑝 to be 1, 2, and 4, corresponding to a centralised execution, 𝑘 = 3, and 𝑘 =
1, respectively. Figure 5.12 shows the running time for the standard auction (§ 5.3.3) as a
function of the number of users, for up to 125 users. The capacity of the providers is based
on the overall bandwidth required at that provider in the bids submitted by the users, and
scaled down using a random factor in [0, 0.25], so roughly no more than a quarter of the
users win the bids. For higher values of 𝑛, the algorithm [Zha+15b] can take in the order of
hours to complete, which is expected as its computational complexity is ≈ 𝒪(𝑚𝑛9(1𝜖)2) for
𝑛 users and 𝑚 providers, though it provides better guarantees for social welfare than other
alternatives.

Figure 5.12 shows that the running time in general grows quickly as 𝑛 increases, and there
is sharp rise in the running time for values of 𝑛 close to 100. This is because the running time
of the algorithm [Zha+15b] is a function of the feasible allocation space (which can grow expo-
nentially in the worst case) of the resource allocation problem. Therefore, the communication
and coordination overhead is not significant when compared to the running time of the al-
location algorithm. On the contrary, the overheads involved in distributing the inputs and
aggregating the results from the providers are easily offset by the gains due to parallelisation
in this case. In Figure 5.12, we can observe significant performance gains in the distributed
case, for 𝑝 = 2 and 𝑝 = 4 (i.e., for 𝑘 = 3 and 𝑘 = 1 respectively). For instance, when 8
providers are available and 𝑘 = 1 the distributed implementation takes around 100 seconds
while the serial implementation takes around 400 seconds. This indicates that our approach
allows for scaling the allocation algorithm, given that when the network growsmore providers
also become available.

80

0 20 40 60 80 100 120 140
Users (n)

0

50

100

150

200

250

300

350

400

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

m= 8, p= 1 (Centralised)
m= 8, p= 2 (Distributed)

m= 8, p= 4 (Distributed)

Figure 5.12: Running time for standard auction

5.5 Summary

Resource allocation is a fundamental problem in networked systems and the design of auction
mechanisms that can provide properties such as truthfulness, budget balance, and maximal
social welfare have been extensively studied in the literature. These works assume a central-
ised trusted auctioneer that can faithfully execute the allocation algorithm. Unfortunately,
many networked systems of today, such as “clouds of clouds”, edge clouds, and community
networks, among others, lack a central trusted point of control (and, if it existed, it would be
a bottleneck). In this chapter, we have addressed the theoretical and practical challenges that
need to be overcome to bridge this gap. More precisely, we have proposed a novel distributed
framework for devising Nash equilibria distributed simulations of the auctioneer that are resi-
lient to asynchrony and coalitions. Furthermore, our framework allows for the parallelisation
of the allocation algorithm, leveraging the distributed nature of the simulation, which is of
paramount practical importance given that, in many allocation algorithms, achieving max-
imal social welfare is computationally intensive. We have devised implementations of the
framework in a realistic testbed of one of the largest community networks deployed today,
and have gathered experimental evidence that the overhead of the emulation is not signific-
ant, even in the cases the allocation algorithm cannot be parallelised, and brings substantial
gains in the case parallelisation is possible. This shows that our approach can be used as a

81

building block to implement resource allocation in decentralised networks.

Notes

The results presented in this chapter were accomplished in cooperation with my co-advisor
Luís Rodrigues and Xavier Vilaça, another PhD student at IST. Xavier did provide relevant
contributions to the design of the game theoretical framework.

The study on the need for incentive-compatible pricing mechanisms (§ 5.1) was presented
in the paper “Towards Incentive-Compatible Pricing for Bandwidth Reservation in Community
Network Clouds” [Kha+15b], in 12th International Conference on Economics of Grids,
Clouds, Systems, and Services (GECON 2015), Cluj-Napoca, Romania, September 2015. The
results for Distributed Auctioneer were published as a full paper “A Distributed Auctioneer
for Resource Allocation in Decentralized Systems” [Kha+16b], in 36th IEEE International
Conference on Distributed Computing Systems (ICDCS 2016), Nara, Japan, June 2016.

82

6
Conclusion

Cloud computing with its success in providing virtualised resources on demand has trans-
formed the technology landscape, revolutionising how Internet applications are developed
and delivered to the users. Peer-to-peer and edge computing models have been explored in
the past decade, but other than a few success stories they never made it big in the mainstream.
Perhaps now is the right opportunity to take full advantage of the virtualization model of the
cloud computing to design the killer applications for the community cloud. On the technical
side, this allows for sophisticated applications and services that were not possible with the
simple process-level isolation approaches of earlier efforts like BOINC or Seattle. The chal-
lenge is to provide developer tools and middleware services that streamline the process of
programming and deploying the community cloud applications. At the same time, killer ap-
plications are needed that by satisfying users’ critical needs and problem scenarios succeed in
engaging the community for the long-term.

In this thesis, we looked at the field of community clouds in general, and clouds in com-
munity networks in particular, to develop economic regulation mechanisms in tune with the
specific social, economic and technical context of the community networks in order to help us
in developing and sustaining a community cloud ecosystem. We looked at how thesemechan-
isms fit in an overall framework of a community cloud system, which supports components
for incentivising contribution, regulating access to resources, and ensuring trust in the system.

83

We developed incentive-based resource regulations mechanisms for a well-knit community
of trusted users, and showed how they are crucial for successful operation of a community
cloud. We also noticed how lack of trust in a community cloud deployed on a large scale
affects negatively the utility and sustainability of the system. To address this issue, we de-
veloped a distributed auctioneer component, which is a virtual trusted entity integrated in
the overall architecture of the community cloud. This component allows to efficiently and
optimally allocate resources in a community of untrusted users, with negligible communica-
tion and computation overhead, and it can also leverage parallelised implementation to offer
scalability.

6.1 Ramifications and Collaborations

The research in this thesis was extended in other contexts through collaborations. We discuss
the details below, and comment on their relevance to the work presented in this thesis.

6.1.1 Community Clouds

We study the general idea of community clouds in the context of other prevailing cloud mod-
els, in particular for the industry [KFN16]. We investigate how this extends to community
clouds built collaboratively, realising ideas from edge computing and volunteer comput-
ing [KFR15]. This provides the broad context for community network clouds, and indicates
their potential use cases.

6.1.2 Social and Economic Mechanisms

We explore the social and economic mechanisms that can help in adoption and growth of
community network clouds [KF14a; KF14b]. We take into account the social and technical
context of community networks, and present a cost-value proposition describing the condi-
tions under which community network clouds could emerge. We propose a set of technical,
social and economic mechanisms that, if placed in community networks, can help accelerate
the uptake and ensure the sustainability of community network clouds. These mechanisms
highlight the importance of managing incentives in community network clouds.

84

6.1.3 Scalability of Community Cloud Architectures

We investigate the scalability of community network cloud model [Kha+13] in order to ana-
lyse different aspects of its performance in comparison to public clouds through simulation
experiments. In a community network cloud the computing resources are heterogeneous and
less powerful, but are geographically distributed and are located closer to the users. Our res-
ults suggest that the performance of the community clouds depends on the conditions of the
community networks, but has potential for improvement with network-aware cloud services.

6.1.4 Supporting Service Selection

Community network clouds need support mechanisms that provide assistance in cloud ser-
vice selectionwhile taking into account different aspects pertaining to associated risks in com-
munity clouds, quality concerns of the users and cost limitations specifically in multi-clouds
ecosystems. We propose a risk-cost-quality based decision support system [Kha+15a] to as-
sist the community cloud users to select the most appropriate cloud services meeting their
needs. The proposed framework not only increases the ease of adoption of community clouds
by providing assistance to users in cloud service selection, but also provides insights into the
improvement of community clouds based on user behaviour.

6.1.5 Cloud Services in Guifi.net

We materialise the proposed framework for community network cloud [Jim+13; Fre+14;
Bai+15a; Sel+15; Kha+16a] in the implementation of the Cloudy distribution [Clo16]. This
distribution can be used to integrate useful services and applications that provide value to
end-users of the community network cloud. We conduct real deployments of these clouds
in the Guifi.net community network and evaluate cloud-based applications such as service
discovery and distributed storage. This deployment experience supports the feasibility of
community clouds, and our measurements demonstrate the performance of services and
applications running in these community clouds. Our results encourage the development
and operation of collaborative cloud-based services using the resources of a community
network, and we anticipate that such services can effectively complement commercial offers.

85

6.2 FutureWork

Carrying onwards from the experience and results with the prototype implementations, a
working service needs to be developed further, that provides the feedback loop between the
users’ contribution and experience, and will be inevitable for adoption, sustainability, main-
tenance and growth of cloud infrastructures in community networks. Larger scale deploy-
ments are required with extended implementation of the different components of the com-
munity cloud framework. This should be complemented by additional services and applica-
tions deployed in the cloud infrastructure, which will provide enhanced value and utility to
the members of community networks for their contribution towards the community cloud.

With respect to bandwidth allocationmechanism, there are others challenges, for instance,
multiple users may be connected to the provider using the same path in the community net-
work, and reserving bandwidth for such users in the same time interval may cause conges-
tion across some of the links, which an intelligent allocation algorithm should try to avoid.
Moreover, any bandwidth reservation scheme should not negatively impact the normal oper-
ation of the community network, so allocationmechanismneeds to be adaptive to the network
congestion and bandwidth usage in the community network.

For distributed auctioneer, we have considered only rational users, and we plan to extend
our framework to the Byzantine users. In the current model, we assumed all providers to
be fully inter-connected. But in the case of federated community clouds, it is possible that
providers in different local clouds may not have very good connections between them, and
so the current approach may result in slow down. In such cases, we plan to explore how to
adapt our distributed auctioneer to different network topologies.

The area of community cloud builds on a vast body of research in peer-to-peer and edge
computing research, and the various lessons learnt from the successes and the failures ofmany
P2P applications. We see a huge opportunity in extending this work for building the core com-
munity cloud services that drive innovation in many related areas, and not just the edge com-
puting. Thedeterminant of this successwill not be just the technical sophisticationwithwhich
the research challenges and open problems are solved, but also by how well the enthusiasts of
the community cloud succeed in capturing the imagination and meeting the expectations of
the end users.

86

Notes

The research discussed in this chapter (§ 6.1) was included in the following publications.

[Bai+15] Roger Baig, Felix Freitag, Amin M Khan, Agusti Moll, Leandro Navarro, Ro-
ger Pueyo Centelles, and Vladimir Vlassov. “Community Clouds at the Edge
deployed in Guifi.net”. In: 4th International Conference on Cloud Networking
(CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015.

[Fre+14] Felix Freitag, Leila Sharifi, Amin M Khan, Leandro Navarro, Roger Baig, Pau
Escrich, and Luis Veiga. “A Look at Energy Efficient System Opportunities
with Community Network Clouds”. In: Workshop on Energy-Efficient System
(EES), within 2nd International Conference on ICT for Sustainability (IST4S
2014). Stockholm, Sweden, Aug. 2014.

[Jim+13] Javi Jiménez, Roger Baig, Pau Escrich, Amin M Khan, Felix Freitag, Leandro
Navarro, Ermanno Pietrosemoli, Marco Zennaro, Amir H Payberah, and
Vladimir Vlassov. “Supporting cloud deployment in the Guifi.net community
network”. In: 5th Global Information Infrastructure and Networking Symposium
(GIIS 2013). Trento, Italy: IEEE, Oct. 2013.

[KF14a] Amin M Khan and Felix Freitag. “Exploring the Role of Macroeconomic Mech-
anisms in Voluntary Resource Provisioning in Community Network Clouds”.
In: 11th International Symposium on Distributed Computing and Artificial Intel-
ligence (DCAI 2014). Vol. 290. Advances in Intelligent Systems and Computing.
Salamanca, Spain: Springer International Publishing, June 2014, pp. 269–278.

[KF14b] AminMKhan and Felix Freitag. “Sparks in the Fog: Social and EconomicMech-
anisms as Enablers for Community Network Clouds”. In: ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal 3.8 (2014).

[Kha+15] Amin M Khan, Felix Freitag, Smrati Gupta, Victor Muntés-Mulero, Jacek
Dominiak, and Peter Matthews. “On Supporting Service Selection for Col-
laborative Multi-Cloud Ecosystems in Community Networks”. In: 29th IEEE
International Conference on Advanced Information Networking and Applications
(AINA 2015). Gwangju, Korea, Mar. 2015.

[KFN16] Amin M Khan, Felix Freitag, and Leandro Navarro. “Community Clouds”. In:
Encyclopedia of Cloud Computing. Ed. by San Murugesan and Irena Bojanova.
Wiley-IEEE, June 2016.

87

[Kha+16] Amin M Khan, Felix Freitag, Leandro Navarro, and Roger Baig. “Enabling
Clouds in Community Networks”. In: European Project Space on Research
and Applications of Information and Communication Systems. Ed. by Carlos
Cerqueira and James Uhomoibhi. Lisbon, Portugal: SCITEPRESS, 2016.

[KFR15] Amin M Khan, Felix Freitag, and Luis Rodrigues. “Current Trends and Future
Directions in Community Edge Clouds”. In: 4th International Conference on
Cloud Networking (CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015.

[Kha+13] AminMKhan, Leila Sharifi, LeandroNavarro, and Luis Veiga. “Clouds of Small
Things: Provisioning Infrastructure-as-a-Service from within Community Net-
works”. In: 2nd InternationalWorkshop onCommunity Networks and Bottom-up-
Broadband (CNBuB 2013), within IEEEWiMob. Lyon, France: IEEE, Oct. 2013,
pp. 16–21.

[Sel+15] Mennan Selimi, AminMKhan, Emmanouil Dimogerontakis, Felix Freitag, and
Roger Pueyo Centelles. “Cloud services in the Guifi.net community network”.
In: Computer Networks 93.P2 (Dec. 2015), pp. 373–388.

88

Bibliography

[Abr+06] I Abraham, D Dolev, R Gonen, and J Halpern. “Distributed Computing Meets
Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty
Computation”. In: PODC. 2006, pp. 53–62 (cit. on p. 16).

[ADH13] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. “Distributed Protocols for
Leader Election: AGame-Theoretic Perspective”. In:DISC. Vol. 8205. LNCS. Jer-
usalem, Israel, Oct. 2013, pp. 61–75 (cit. on pp. 16, 17, 53, 66, 73, 78).

[Afe+14] Yehuda Afek, Yehonatan Ginzberg, Shir Landau Feibish, and Moshe Sulamy.
“Distributed computing building blocks for rational agents”. In: PODC. New
York, NY, USA: ACM Press, July 2014, pp. 406–415 (cit. on pp. 16, 17, 69, 78).

[Agm+13] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
“Deconstructing Amazon EC2 Spot Instance Pricing”. In: ACM Transactions on
Economics and Computation 1.3 (Sept. 2013), pp. 1–20 (cit. on pp. 11, 15).

[Aiy+05] Amitanand S. Aiyer, LorenzoAlvisi, AllenClement,MikeDahlin, Jean-Philippe
Martin, and Carl Porth. “BAR fault tolerance for cooperative services”. In:ACM
SIGOPS Operating Systems Review 39.5 (Oct. 2005), p. 45 (cit. on p. 16).

[Alb04] Michael Albert. Parecon: Life After Capitalism. Verso Books, 2004 (cit. on pp. 8,
29, 33).

[And04] David P Anderson. “BOINC : A System for Public-Resource Computing and
Storage”. In: 5th IEEE/ACM International Workshop on Grid Computing. Pitts-
burgh, USA, Nov. 2004, pp. 4–10 (cit. on pp. 7, 21).

[And+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthi-
mer. “SETI@home: an experiment in public-resource computing”. In: Commu-
nications of the ACM 45.11 (Nov. 2002), pp. 56–61 (cit. on pp. 7, 21).

[ALS10] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Definitive
Guide. 1st. O’Reilly Media, Inc., 2010 (cit. on p. 40).

[Ath16] Athens Wireless Metropolitan Network (AWMN). 2016. url: http://www.awmn.
net/ (cit. on p. 1).

89

http://www.awmn.net/
http://www.awmn.net/

[BCF07] MosheBabaioff, JohnChuang, andMichal Feldman. “Incentives in peer-to-peer
systems”. In: Algorithmic GameTheory. Ed. by Noam Nisan, Tim Roughgarden,
Eva Tardos, and Vijay Vazirani. Cambridge University Press, 2007, pp. 593–612
(cit. on p. 7).

[BMT12] Ozalp Babaoglu,MorenoMarzolla, andMichele Tamburini. “Design and imple-
mentation of a P2P Cloud system”. In: 27th Annual ACM Symposium on Applied
Computing (SAC ’12). New York, NY, USA: ACM Press, Mar. 2012, pp. 412–417
(cit. on p. 21).

[Bai+15a] Roger Baig, Felix Freitag, Amin M Khan, Agusti Moll, Leandro Navarro, Ro-
ger Pueyo Centelles, and Vladimir Vlassov. “Community Clouds at the Edge
deployed in Guifi.net”. In: 4th International Conference on Cloud Networking
(CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015 (cit. on pp. 22, 85).

[Bai+15b] Roger Baig, Ramon Roca, Felix Freitag, and Leandro Navarro. “guifi.net, a
crowdsourced network infrastructure held in common”. In: Computer Net-
works 90 (Oct. 2015), pp. 150–165 (cit. on pp. 1, 10, 30, 52, 54).

[Beb+09] Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay
S. Pande. “Folding@home: Lessons From Eight Years of Volunteer Distributed
Computing”. In: 8th IEEE International Workshop on High Performance Com-
putational Biology (HiCOMB ’09), within IPDPS. Rome, Italy: IEEE, May 2009,
pp. 1–8 (cit. on pp. 7, 21).

[BG06] Maria Bina and GM Giaglis. “Unwired Collective Action: Motivations of Wire-
less Community Participants”. In: International Conference on Mobile Business
(ICMB’06). Copenhagen, Denmark: IEEE, June 2006, pp. 31–31 (cit. on p. 7).

[Bra+13] Bart Braem, Roger Baig Viñas, Aaron L. Kaplan, Axel Neumann, Ivan Vilata i
Balaguer, Blaine Tatum, Malcolm Matson, Chris Blondia, Christoph Barz, Hen-
ning Rogge, Felix Freitag, Leandro Navarro, Joseph Bonicioli, Stavros Papath-
anasiou, and Pau Escrich. “A case for research with and on community net-
works”. In:ACMSIGCOMMComputer Communication Review 43.3 (July 2013),
pp. 68–73 (cit. on pp. 1, 21, 43).

[Buy13] Umit Cavus Buyuksahin. “On Incentive Mechanisms for Resource Sharing in
Community Clouds”.Master’s thesis. Universitat Politècnica de Catalunya, 2013
(cit. on p. 48).

90

[Buy+02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger.
“Economic models for resource management and scheduling in Grid comput-
ing”. In: Concurrency and Computation: Practice and Experience 14.13-15 (Nov.
2002), pp. 1507–1542 (cit. on p. 15).

[BAV05] Rajkumar Buyya, David Abramson, and Srikumar Venugopal. “The Grid Eco-
nomy”. In: Proceedings of the IEEE 93.3 (Mar. 2005), pp. 698–714 (cit. on p. 10).

[Cap+09] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
“Seattle: a platform for educational cloud computing”. In: 40th ACM Technical
Symposium on Computer Science Education (SIGCSE 2009). Chattanooga, USA:
ACM, Mar. 2009, pp. 111–115 (cit. on p. 21).

[Cat+14] SimonCaton, ChristianHaas, Kyle Chard, Kris Bubendorfer, andOmer F. Rana.
“A Social Compute Cloud: Allocating and Sharing Infrastructure Resources via
Social Networks”. In: IEEE Transactions on Services Computing 7.3 (July 2014),
pp. 359–372 (cit. on pp. 9, 13–15, 21, 24).

[Cha+12] Kyle Chard, Kris Bubendorfer, Simon Caton, and Omer F. Rana. “Social Cloud
Computing: A Vision for Socially Motivated Resource Sharing”. In: IEEE Trans-
actions on Services Computing 5.4 (Jan. 2012), pp. 551–563 (cit. on p. 21).

[Chu+03] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. “PlanetLab: An Overlay Testbed for Broad-
Coverage Services”. In: ACM SIGCOMM Computer Communication Review
33.3 (July 2003), pp. 3–12 (cit. on pp. 7, 21).

[Clo16] Cloudy GNU/Linux Distribution. 2016. url: http://cloudy.community (cit. on
pp. 25, 85).

[Com16a] Community Cloud Testbed. 2016. url: http://wiki.clommunity-project.eu/
testbed:start (cit. on pp. 25, 78).

[Com16b] Community-Lab: Community Networks Testbed by the CONFINE Project. 2016.
url: http://community-lab.net/ (cit. on p. 40).

[CW12] Costas Courcoubetis and Richard Weber. “Economic Issues in Shared In-
frastructures”. In: IEEE/ACM Transactions on Networking 20.2 (Apr. 2012),
pp. 594–608 (cit. on p. 10).

[DP12] Salvatore Distefano and Antonio Puliafito. “Cloud@Home: Toward a Volunteer
Cloud”. In: IT Professional 14.1 (Jan. 2012), pp. 27–31 (cit. on p. 21).

91

http://cloudy.community
http://wiki.clommunity-project.eu/testbed:start
http://wiki.clommunity-project.eu/testbed:start
http://community-lab.net/

[EOS07] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. “Internet advert-
ising and the generalized second-price auction: Selling billions of dollars worth
of keywords”. In: American Economic Review 97.1 (2007), pp. 242–259 (cit. on
p. 15).

[FK03] Ian Foster and Carl Kesselman.The Grid 2: Blueprint for a new computing infra-
structure. Elsevier, 2003 (cit. on pp. 7, 10).

[Frei16] Freifunk. 2016. url: http://freifunk.net (cit. on p. 1).

[Fre+14] Felix Freitag, Leila Sharifi, Amin M Khan, Leandro Navarro, Roger Baig, Pau
Escrich, and Luis Veiga. “A Look at Energy Efficient System Opportunities
with Community Network Clouds”. In: Workshop on Energy-Efficient System
(EES), within 2nd International Conference on ICT for Sustainability (IST4S
2014). Stockholm, Sweden, Aug. 2014 (cit. on p. 85).

[Fun16] FunkFeuer. 2016. url: http://funkfeuer.at/ (cit. on p. 1).

[GC05] Daniel Grosu and Anthony T. Chronopoulos. “Noncooperative load balancing
in distributed systems”. In: Journal of Parallel and Distributed Computing 65.9
(Sept. 2005), pp. 1022–1034 (cit. on p. 9).

[GB14] Nikolay Grozev and Rajkumar Buyya. “Inter-Cloud architectures and applic-
ation brokering: Taxonomy and survey”. In: Software: Practice and Experience
44.3 (Mar. 2014), pp. 369–390 (cit. on p. 15).

[Gui+14] Yang Gui, Zhenzhe Zheng, Fan Wu, Xiaofeng Gao, and Guihai Chen. “SOAR:
Strategy-proof auction mechanisms for distributed cloud bandwidth reser-
vation”. In: IEEE International Conference on Communication Systems (ICCS
2014). Macau: IEEE, Nov. 2014, pp. 162–166 (cit. on p. 12).

[Gui16] Guifi.net: Open, Free and Neutral Network Internet for everybody. 2016. url:
http://guifi.net (cit. on p. 1).

[Guo+13] Jian Guo, Fangming Liu, Dan Zeng, John C S Lui, and Hai Jin. “A cooperative
game based allocation for sharing data center networks”. In: 32nd IEEE Interna-
tional Conference on Computer Communications (INFOCOM’13). Turin, Italy:
IEEE, Apr. 2013, pp. 2139–2147 (cit. on pp. 12–14).

[HT04] J Halpern andVTeague. “Rational Secret Sharing andMultiparty Computation:
Extended Abstract”. In: STOC. 2004, pp. 623–632 (cit. on p. 16).

92

http://freifunk.net
http://funkfeuer.at/
http://guifi.net

[Hur73] Leonid Hurwicz. “The Design of Mechanisms for Resource Allocation”. In: The
American Economic Review 63.2 (1973), pp. 1–30 (cit. on p. 9).

[Jan+11] R. Jana, Karthik N. Kannan, Yih-Farn Chen, R. Jana, and Karthik N. Kannan.
“Using Generalized Second Price Auction for Congestion Pricing”. In: IEEE
Global Telecommunications Conference (GLOBECOM 2011). Dec. 2011 (cit. on
p. 57).

[Jan+14] Minsung Jang, Karsten Schwan, Ketan Bhardwaj, Ada Gavrilovska, and Adhyas
Avasthi. “Personal clouds: Sharing and integrating networked resources to en-
hance end user experiences”. In: 33rd Annual IEEE International Conference on
Computer Communications (INFOCOM’14). Toronto, Canada: IEEE, Apr. 2014,
pp. 2220–2228 (cit. on p. 21).

[Jim+13] Javi Jiménez, Roger Baig, Pau Escrich, Amin M Khan, Felix Freitag, Leandro
Navarro, Ermanno Pietrosemoli, Marco Zennaro, Amir H Payberah, and
Vladimir Vlassov. “Supporting cloud deployment in the Guifi.net community
network”. In: 5th Global Information Infrastructure and Networking Symposium
(GIIS 2013). Trento, Italy: IEEE, Oct. 2013 (cit. on p. 85).

[KBF15] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Incentive-based
resource assignment and regulation for collaborative cloud services in com-
munity networks”. In: Journal of Computer and System Sciences 81.8 (Dec. 2015),
pp. 1479–1495 (cit. on pp. 33, 49).

[KBF14] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Prototyping
Incentive-Based Resource Assignment for Clouds in Community Networks”.
In: 28th IEEE International Conference on Advanced Information Networking
and Applications (AINA 2014). Victoria, Canada: IEEE, May 2014, pp. 719–726
(cit. on pp. 40, 48).

[KBF13] Amin M Khan, Umit Cavus Buyuksahin, and Felix Freitag. “Towards Incentive-
based Resource Assignment and Regulation in Clouds for Community Net-
works”. In: Economics of Grids, Clouds, Systems, and Services. Ed. by Jörn
Altmann Altmann, Kurt Vanmechelen, and Omer F. Rana. Vol. 8193. Lecture
Notes in Computer Science. Zaragoza, Spain: Springer International Publishing,
Sept. 2013, pp. 197–211 (cit. on pp. 36, 48).

93

[KF14a] Amin M Khan and Felix Freitag. “Exploring the Role of Macroeconomic Mech-
anisms in Voluntary Resource Provisioning in Community Network Clouds”.
In: 11th International Symposium on Distributed Computing and Artificial Intel-
ligence (DCAI 2014). Vol. 290. Advances in Intelligent Systems and Computing.
Salamanca, Spain: Springer International Publishing, June 2014, pp. 269–278
(cit. on p. 84).

[KF14b] AminMKhan and Felix Freitag. “Sparks in the Fog: Social and EconomicMech-
anisms as Enablers for Community Network Clouds”. In: ADCAIJ: Advances
in Distributed Computing and Artificial Intelligence Journal 3.8 (2014) (cit. on
pp. 22, 84).

[Kha+15a] Amin M Khan, Felix Freitag, Smrati Gupta, Victor Muntés-Mulero, Jacek
Dominiak, and Peter Matthews. “On Supporting Service Selection for Col-
laborative Multi-Cloud Ecosystems in Community Networks”. In: 29th IEEE
International Conference on Advanced Information Networking and Applications
(AINA 2015). Gwangju, Korea, Mar. 2015 (cit. on p. 85).

[KFN16] Amin M Khan, Felix Freitag, and Leandro Navarro. “Community Clouds”. In:
Encyclopedia of Cloud Computing. Ed. by San Murugesan and Irena Bojanova.
Wiley-IEEE, June 2016 (cit. on pp. 20, 26, 84).

[Kha+16a] Amin M Khan, Felix Freitag, Leandro Navarro, and Roger Baig. “Enabling
Clouds in Community Networks”. In: European Project Space on Research and
Applications of Information and Communication Systems. Ed. by Carlos Cer-
queira and James Uhomoibhi. Lisbon, Portugal: SCITEPRESS, 2016 (cit. on
p. 85).

[KFR15] Amin M Khan, Felix Freitag, and Luis Rodrigues. “Current Trends and Future
Directions in Community Edge Clouds”. In: 4th International Conference on
Cloud Networking (CloudNet 2015). Niagara Falls, Canada: IEEE, Oct. 2015 (cit.
on pp. 21, 27, 84).

[KSF14] Amin M Khan, Mennan Selimi, and Felix Freitag. “Towards Distributed Archi-
tecture for Collaborative Cloud Services in Community Networks”. In: 6th Inter-
national Conference on Intelligent Networking and Collaborative Systems (INCoS
2014). Salerno, Italy: IEEE, Sept. 2014 (cit. on p. 27).

94

[Kha+13] AminMKhan, Leila Sharifi, LeandroNavarro, and Luis Veiga. “Clouds of Small
Things: Provisioning Infrastructure-as-a-Service from within Community Net-
works”. In: 2nd InternationalWorkshop onCommunity Networks and Bottom-up-
Broadband (CNBuB 2013), within IEEEWiMob. Lyon, France: IEEE, Oct. 2013,
pp. 16–21 (cit. on p. 85).

[Kha+16b] Amin M Khan, Xavier Vilaça, Luis Rodrigues, and Felix Freitag. “A Distributed
Auctioneer for Resource Allocation in Decentralized Systems”. In: 36th IEEE
International Conference onDistributedComputing Systems (ICDCS 2016). Nara,
Japan, June 2016 (cit. on p. 82).

[Kha+15b] Amin M Khan, Xavier Vilaça, Luis Rodrigues, and Felix Freitag. “Towards
Incentive-Compatible Pricing for Bandwidth Reservation in Community Net-
work Clouds”. In: 12th International Conference on Economics of Grids, Clouds,
Systems, and Services (GECON 2015). Cluj-Napoca, Romania: Springer Inter-
national Publishing, Sept. 2015 (cit. on pp. 54, 82).

[KA06] Samee Ullah Khan and Ishfaq Ahmad. “Non-cooperative, semi-cooperative,
and cooperative games-based grid resource allocation”. In: 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006). IEEE, 2006 (cit.
on p. 15).

[Kri09] Vijay Krishna. Auction Theory. Academic Press, 2009, p. 336 (cit. on p. 15).

[Lai+04] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang, and Bern-
ardo A. Huberman. “Tycoon: an Implementation of a Distributed, Market-
based Resource Allocation System”. In: Multiagent and Grid Systems 1.3 (Dec.
2004), pp. 169–182 (cit. on pp. 9, 10, 14, 15, 53).

[Lee+07] Seungjoon Lee, Dave Levin, Vijay Gopalakrishnan, and Bobby Bhattacharjee.
“Backbone construction in selfish wireless networks”. In: ACM SIGMETRICS
Performance Evaluation Review 35.1 (2007), p. 121 (cit. on pp. 9, 10).

[Leo13] Xavier Leon. “Economic regulation for multi tenant infrastructures”. PhD
Thesis. Universitat Politècnica de Catalunya, 2013 (cit. on p. 10).

[Li+13] Hongxing Li, Chuan Wu, Zongpeng Li, and Francis C. M. Lau. “Profit-
maximizing virtual machine trading in a federation of selfish clouds”. In: 32nd
IEEE International Conference on Computer Communications (INFOCOM’13).
Turin, Italy: IEEE, Apr. 2013, pp. 25–29 (cit. on p. 14).

95

[LLZ15] Zongpeng Li, Baochun Li, and Yuefei Zhu. “Designing Truthful Spectrum Auc-
tions forMulti-hop SecondaryNetworks”. In: IEEETransactions onMobile Com-
puting 14.2 (Feb. 2015), pp. 316–327 (cit. on p. 15).

[LAN03] Helger Lipmaa, N. Asokan, and Valtteri Niemi. “Secure Vickrey Auctions
without Threshold Trust”. In: Financial Cryptography. Ed. by Matt Blaze.
Vol. 2357. LNCS 1. Springer Berlin Heidelberg, 2003, pp. 87–101 (cit. on
p. 16).

[Liu+10] Zhengye Liu, Prithula Dhungel, Di Wu, Chao Zhang, and Keith W. Ross.
“Understanding and Improving Ratio Incentives in Private Communities”. In:
ICDCS. IEEE, 2010, pp. 610–621 (cit. on pp. 9, 15).

[Luc00a] David Lucking-Reiley. “Auctions on the Internet: What’s Being Auctioned, and
How?” In:The Journal of Industrial Economics 48.3 (2000), pp. 227–252 (cit. on
p. 15).

[Luc00b] David Lucking-Reiley. “Vickrey Auctions in Practice: From Nineteenth-
Century Philately to Twenty-First-Century E-Commerce”. In: Journal of Eco-
nomic Perspectives 14.3 (2000), pp. 183–192 (cit. on pp. 14, 15).

[MT14] Patrick Maillé and Bruno Tuffin. Telecommunication Network Economics: From
Theory to Applications. Cambridge University Press, 2014 (cit. on pp. 10, 54, 56,
60, 62).

[MB09] Alexandros Marinos and Gerard Briscoe. “Community Cloud Computing”. In:
1st International Conference on Cloud Computing (CloudCom 2009). Ed. byMar-
tinGilje Jaatun, Gansen Zhao, and Chunming Rong. Vol. 5931. LNCS. Beijing,
China: Springer Berlin Heidelberg, Dec. 2009, pp. 472–484 (cit. on pp. 19, 21).

[MG11] Peter Mell and Timothy Grance. “The NIST Definition of Cloud Computing”.
In: NIST Special Publication 800.145 (2011) (cit. on p. 20).

[MR14] Silvio Micali and Michael O. Rabin. “Cryptography Miracles, Secure Auctions,
Matching Problem Verification”. In: Communications of the ACM 57 (2014),
pp. 85–93 (cit. on p. 16).

[MB16] San Murugesan and Irena Bojanova. Encyclopedia of Cloud Computing. Ed. by
San Murugesan and Irena Bojanova. Wiley-IEEE, June 2016, p. 765 (cit. on
p. 20).

96

[MS83] Roger BMyerson andMark A Satterthwaite. “Efficient mechanisms for bilateral
trading”. In: Journal of Economic Theory 29.2 (Apr. 1983), pp. 265–281 (cit. on
pp. 13, 64).

[Nin16] Ninux.org Wireless Network Community. 2016. url: http://ninux.org (cit. on
p. 1).

[NR99] Noam Nisan and Amir Ronen. “Algorithmic Mechanism Design”. In: STOC.
New York, NY, USA: ACM Press, Apr. 1999, pp. 129–140 (cit. on pp. 7, 9, 11,
14, 56, 57, 62).

[NFL12] Di Niu, Chen Feng, and Baochun Li. “Pricing cloud bandwidth reservations
under demand uncertainty”. In: SIGMETRICS. NewYork, NY,USA:ACMPress,
2012, p. 151 (cit. on pp. 11, 12).

[NL13] DiNiu andBaochunLi. “AnEfficientDistributedAlgorithm forResourceAlloc-
ation in Large-Scale Coupled Systems”. In: IEEE INFOCOM. Turin, Italy: IEEE,
Apr. 2013, pp. 1501–1509 (cit. on p. 11).

[Niy13] Dusit Niyato. “Auction Approaches for Resource Allocation in Wireless Sys-
tems: A Survey”. In: IEEE Communications Surveys & Tutorials 15.3 (2013),
pp. 1020–1041 (cit. on p. 9).

[Nys12] NYSE Technologies Introduces theWorld’s First Capital Markets Community Plat-
form. 2012. url: http://www1.nyse.com/press/1306838249812.html (cit. on
p. 21).

[Ope16a] OpenNebula: Open Source Data Center Virtualization. 2016. url: http : / /

opennebula.org/ (cit. on p. 22).

[Ope16b] OpenStack: Open Source Cloud Computing Software. 2016. url: http://www.
openstack.org/ (cit. on p. 22).

[Ope16c] OpenWrt: Linux distribution for embedded devices. 2016. url: http://openwrt.
org/ (cit. on p. 40).

[Opt12] OptumHealthCareCloudEnvironment. 2012. url: http://www.unitedhealthgroup.
com/newsroom/articles/news/optum/2012/0214cloud.aspx (cit. on p. 21).

[Pal+13] Francesco Palmieri, Luigi Buonanno, Salvatore Venticinque, Rocco Aversa, and
Beniamino Di Martino. “A distributed scheduling framework based on selfish
autonomous agents for federated cloud environments”. In: Future Generation
Computer Systems 29.6 (Aug. 2013), pp. 1461–1472 (cit. on p. 14).

97

http://ninux.org
http://www1.nyse.com/press/1306838249812.html
http://opennebula.org/
http://opennebula.org/
http://www.openstack.org/
http://www.openstack.org/
http://openwrt.org/
http://openwrt.org/
http://www.unitedhealthgroup.com/newsroom/articles/news/optum/2012/0214cloud.aspx
http://www.unitedhealthgroup.com/newsroom/articles/news/optum/2012/0214cloud.aspx

[Pic05] Pico Peering Agreement v1.0. 2005. url: http://www.picopeer.net (cit. on pp. 7,
10, 30).

[Pop+12] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. “FairCloud: sharing the network in cloud
computing”. In: SIGCOMM. New York, NY, USA: ACM Press, 2012, p. 187 (cit.
on pp. 11, 12).

[Pun+13] Magdalena Punceva, Ivan Rodero, Manish Parashar, Omer F. Rana, and Ioan
Petri. “Incentivising resource sharing in social clouds”. In: Concurrency and
Computation: Practice and Experience (Mar. 2013) (cit. on p. 13).

[Rah+10] R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, D. Epema, and H. Sips. “Im-
proving Efficiency and Fairness in P2P Systems with Effort-Based Incentives”.
In: IEEE International Conference on Communications (ICC 2010). Cape Town,
South Africa: IEEE, May 2010, pp. 1–5 (cit. on pp. 8, 29, 33).

[RS81] John G. Riley and William F Samuelson. “Optimal Auctions”. In:The American
Economic Review 71.3 (1981), pp. 381–392 (cit. on p. 9).

[RD10] Rodrigo Rodrigues and Peter Druschel. “Peer-to-peer systems”. In: Communic-
ations of the ACM 53.10 (2010), pp. 72–82 (cit. on p. 7).

[San00] Tuomas Sandholm. “Issues in Computational Vickrey Auctions”. In: Interna-
tional Journal of Electronic Commerce 4.3 (2000), pp. 1–35 (cit. on pp. 14, 16).

[Sat+09] M. Satyanarayanan, P. Bahl, R. Caceres, andN.Davies. “TheCase for VM-Based
Cloudlets inMobile Computing”. In: IEEE Pervasive Computing 8.4 (Oct. 2009),
pp. 14–23 (cit. on p. 22).

[Sel+15] Mennan Selimi, AminMKhan, Emmanouil Dimogerontakis, Felix Freitag, and
Roger Pueyo Centelles. “Cloud services in the Guifi.net community network”.
In: Computer Networks 93.P2 (Dec. 2015), pp. 373–388 (cit. on pp. 25, 27, 85).

[Ser16] Serf. 2016. url: https://www.serfdom.io/ (cit. on p. 41).

[SL14] Haiying Shen and Zhuozhao Li. “New bandwidth sharing and pricing policies
to achieve a win-win situation for cloud provider and tenants”. In: 33rd Annual
IEEE International Conference on Computer Communications (INFOCOM’14).
Toronto, Canada: IEEE, Apr. 2014, pp. 835–843 (cit. on pp. 12, 13).

[She+10] Xuemin Shen, Heather Yu, John Buford, and Mursalin Akon.Handbook of Peer-
to-Peer Networking. Vol. 1. Springer Heidelberg, 2010 (cit. on pp. 7, 21, 33).

98

http://www.picopeer.net
https://www.serfdom.io/

[Shi+14] W Shi, L Zhang, C Wu, Z Li, and F C M Lau. “An Online Auction Framework
for Dynamic Resource Provisioning in Cloud Computing”. In: SIGMETRICS.
2014, pp. 71–83 (cit. on p. 11).

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed computing
in practice: the Condor experience”. In: Concurrency and Computation: Practice
and Experience 17.2-4 (Feb. 2005), pp. 323–356 (cit. on p. 21).

[Veg15] Davide Vega D’Aurelio. “Incentives for sharing heterogeneous resources in dis-
tributed systems: a participatory approach”. PhD thesis. Barcelona, Spain: Uni-
versitat Politècnica de Catalunya, 2015 (cit. on p. 8).

[Veg+12] Davide Vega, Llorenc Cerda-Alabern, Leandro Navarro, and Roc Meseguer.
“Topology patterns of a community network: Guifi.net”. In: 1st International
Workshop on Community Networks and Bottom-up-Broadband (CNBuB 2012),
within IEEE WiMob. Barcelona, Spain: IEEE, Oct. 2012, pp. 612–619 (cit. on
pp. 31, 32, 37).

[Veg+13] Davide Vega, Roc Messeguer, Sergio F. Ochoa, and Felix Freitag. “Sharing
Hardware Resources in Heterogeneous Computer-Supported Collaboration
Scenarios”. In: Integrated Computer-Aided Engineering 20.1 (2013), pp. 59–77
(cit. on pp. 8, 29, 33).

[Wal+92] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stornetta.
“Spawn: a distributed computational economy”. In: IEEE Transactions on Soft-
ware Engineering 18.2 (1992), pp. 103–117 (cit. on p. 9).

[WRM12] Qian Wang, Kui Ren, and Xiaoqiao Meng. “When cloud meets eBay: Towards
effective pricing for cloud computing”. In: IEEE INFOCOM. Orlando, FL, USA:
IEEE, Mar. 2012, pp. 936–944 (cit. on pp. 9, 11).

[Wil99] Uri Wilensky. NetLogo. 1999. url: http://ccl.northwestern.edu/netlogo/ (cit.
on p. 58).

[Wir10] Wireless Commons License forOpen, Free&NeutralNetwork (OFNN). 2010. url:
http://guifi.net/es/ProcomunXOLN (cit. on pp. 8, 10, 30).

[Xia+13] Yong Xiao, Jianwei Huang, Chau Yuen, and Luiz A. DaSilva. “Fairness and effi-
ciency tradeoffs for user cooperation in distributed wireless networks”. In: IN-
FOCOM. Turin, Italy: IEEE, Apr. 2013, pp. 285–289 (cit. on pp. 9, 10).

99

http://ccl.northwestern.edu/netlogo/
http://guifi.net/es/ProcomunXOLN

[Yi+11] Sangho Yi, Emmanuel Jeannot, Derrick Kondo, and David P. Anderson. “To-
wards Real-Time, Volunteer Distributed Computing”. In: 11th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid 2011).
Newport Beach, CA, USA: IEEE, May 2011, pp. 154–163 (cit. on p. 21).

[Zmq16] ZeroMQ. 2016. url: http://zeromq.org/community (cit. on p. 78).

[Zha+13] Hong Zhang, Bo Li, Hongbo Jiang, Fangming Liu, Athanasios V Vasilakos, and
Jiangchuan Liu. “A framework for truthful online auctions in cloud computing
with heterogeneous user demands”. In: IEEE INFOCOM. Turin, Italy: IEEE, Apr.
2013, pp. 1510–1518 (cit. on p. 11).

[ZAM10] K Zhang, Nick Antonopoulos, and Z Mahmood. “A taxonomy of incentive
mechanisms in peer-to-peer systems: Design requirements and classification”.
In: International Journal on Advances in Networks and Services 3.1 (2010),
pp. 196–205 (cit. on p. 7).

[ZLW14] Linquan Zhang, Zongpeng Li, andChuanWu. “Dynamic resource provisioning
in cloud computing: A randomized auction approach”. In: 33rd Annual IEEE In-
ternational Conference on Computer Communications (INFOCOM’14). Toronto,
Canada: IEEE, Apr. 2014, pp. 433–441 (cit. on pp. 11, 12).

[Zha+15a] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis C.M. Lau.
“Online Auctions in IaaS Clouds: Welfare and Profit Maximization with Server
Costs”. In: SIGMETRICS. Vol. 43. 1. Portland, USA: ACM, June 2015, pp. 3–15
(cit. on p. 11).

[Zha+15b] Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis C M Lau. “A Truthful (1-
𝜖)-Optimal Mechanism for On-demand Cloud Resource Provisioning”. In: IN-
FOCOM. 2015 (cit. on pp. 11, 53, 62, 77, 80).

[ZLL14a] Han Zhao, Xinxin Liu, and Xiaolin Li. “Towards efficient and fair resource trad-
ing in community-based cloud computing”. In: Journal of Parallel and Distrib-
uted Computing 74.11 (Aug. 2014), pp. 3087–3097 (cit. on p. 13).

[Zhe+15] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and Xinyu Wang.
“How to Bid the Cloud”. In: SIGCOMM. New York, NY, USA: ACM Press, 2015,
pp. 71–84 (cit. on p. 11).

100

http://zeromq.org/community

[Zhe+14] Zhenzhe Zheng, Yang Gui, Fan Wu, and Guihai Chen. “STAR: Strategy-Proof
Double Auctions for Multi-Cloud, Multi-Tenant Bandwidth Reservation”. In:
IEEE Transactions on Computers 64.7 (2014), pp. 2071–2083 (cit. on pp. 11, 12,
76, 79).

[ZLL14b] Haojie Zhou, Ka-Cheong Leung, and Victor O. K. Li. “Auction-based band-
width allocation and scheduling in noncooperative wireless networks”. In: IEEE
International Conference on Communications (ICC 2014). Sydney, Australia:
IEEE, June 2014, pp. 2556–2561 (cit. on p. 10).

[Zho+08] Xia Zhou, Sorabh Gandhi, Subhash Suri, and Haitao Zheng. “eBay in the Sky:
strategy-proof wireless spectrum auctions”. In: MobiCom. New York, NY, USA:
ACM Press, Sept. 2008 (cit. on pp. 9, 14, 15, 53).

101

This thesis was typeset using LATEX, originally
developed by Leslie Lamport and based on Don-
ald Knuth’s TEX. The body text is set in 11 point

Minion Pro, designed by Robert Slimbach in 1990 in-
spired by late Renaissance-era type and issued by Adobe
in 2000. The headlines and captions are set in variations
of Myriad Pro, a humanist sans-serif typeface designed
by Robert Slimbach and Carol Twombly in 1990 and is-
sued by Adobe in 2000. The above illustration was cre-
ated by Ben Schlitter and released under cc by-nc-nd
4.0. A template that can be used to format a PhD dis-
sertation with this look & feel has been released under
the permissive agpl license, and can be found online at
github.com/aminmkhan/Dissertate or from its lead au-
thor, Jordan Suchow, at suchow@post.harvard.edu.

http://www.studiobenben.com/27771/428167/projects/science-experiments
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.gnu.org/licenses/agpl-3.0.html
https://github.com/aminmkhan/Dissertate
https://github.com/suchow
mailto:suchow@post.harvard.edu

	Acknowledgments
	Abstract
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Problem Statement
	1.2 Research Methodology
	1.3 Results
	1.4 Summary of Contributions
	1.5 Outline of the Thesis

	2 State-of-the-Art
	2.1 Definitions
	2.2 Incentives
	2.3 Economic Based Resource Allocation
	2.3.1 Community Networks
	2.3.2 Cloud Systems
	2.3.3 Cloud Federations

	2.4 Trust in Resource Allocation
	2.4.1 Allocation with Rational Users

	3 Middleware for Resource Regulation in Community Clouds
	3.1 Community Network Clouds
	3.1.1 Commercial Community Clouds
	3.1.2 Citizen Community Clouds
	3.1.3 Community Clouds in Community Networks

	3.2 Architecture for Community Network Cloud
	3.3 Incentives Based Resource Regulation
	3.4 Summary

	4 Managing Incentives with Trusted Users
	4.1 Motivations
	4.2 System Model
	4.2.1 Nodes in Community Network
	4.2.2 Community Cloud Scenarios
	4.2.3 Resource Provisioning and Coordination

	4.3 Effort-Based Incentive Mechanism
	4.3.1 Formulations
	4.3.2 Algorithm for Requests Processing

	4.4 Performance Evaluation
	4.4.1 Evaluation with Simulation Experiments
	4.4.2 Evaluation with Prototype
	4.4.3 Discussion

	4.5 Summary

	5 Managing Incentives with Untrusted Users
	5.1 Motivations
	5.1.1 System Model
	5.1.2 Pricing Mechanisms
	5.1.3 Scheduling Algorithm
	5.1.4 Evaluation
	5.1.5 Discussion

	5.2 System Model
	5.2.1 Resource Allocation Auctions
	5.2.2 Distributed Auctioneer Simulation
	5.2.3 Game Theoretical Model

	5.3 The Distributed Auctioneer
	5.3.1 General Framework
	5.3.2 Parallel Allocator Framework
	5.3.3 Resource Allocation Instances

	5.4 Performance Evaluation
	5.4.1 Hardware/Software Setup
	5.4.2 Double Auction Deployment
	5.4.3 Standard Auction Deployment

	5.5 Summary

	6 Conclusion
	6.1 Ramifications and Collaborations
	6.1.1 Community Clouds
	6.1.2 Social and Economic Mechanisms
	6.1.3 Scalability of Community Cloud Architectures
	6.1.4 Supporting Service Selection
	6.1.5 Cloud Services in Guifi.net

	6.2 Future Work

	Bibliography

